Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Xét ΔABC vuông cân tại A có AM là đường trung tuyến ứng với cạnh huyền BC(M là trung điểm của BC)
nên \(AM=\dfrac{BC}{2}\)(Định lí 1 về áp dụng hình chữ nhật vào tam giác vuông)
mà \(MB=\dfrac{BC}{2}\)(M là trung điểm của BC)
nên AM=MB
Xét ΔABC vuông cân tại A có AM là đường trung tuyến ứng với cạnh đáy BC(M là trung điểm của BC)
nên AM là đường cao, đường phân giác ứng với cạnh BC(Định lí tam giác cân)
⇒AM⊥BC
Ta có: \(\widehat{EMA}+\widehat{AMD}=\widehat{EMD}\)(tia MA nằm giữa hai tia ME,MD)
hay \(\widehat{EMA}+\widehat{AMD}=90^0\)(1)
Ta có: \(\widehat{AMD}+\widehat{BMD}=\widehat{AMB}\)(tia MD nằm giữa hai tia MA,MB)
hay \(\widehat{AMD}+\widehat{BMD}=90^0\)(2)
Từ (1) và (2) suy ra \(\widehat{EMA}=\widehat{DMB}\)
Ta có: AM là tia phân giác của \(\widehat{BAC}\)(cmt)
nên \(\widehat{MAC}=\dfrac{\widehat{BAC}}{2}=\dfrac{90^0}{2}=45^0\)
hay \(\widehat{EAM}=45^0\)
mà \(\widehat{B}=45^0\)(Số đo của một góc ở đáy trong ΔABC vuông cân tại A)
nên \(\widehat{EAM}=\widehat{B}\)
Xét ΔEAM và ΔDBM có
\(\widehat{EMA}=\widehat{DMB}\)(cmt)
AM=MB(cmt)
\(\widehat{EAM}=\widehat{B}\)(cmt)
Do đó: ΔEAM=ΔDBM(g-c-g)
⇒ME=MD(hai cạnh tương ứng)(đpcm)
a: Ta có: ΔABC cân tại A
mà AM là đường trung tuyến
nên AM là đường cao
chịu.Em mới học lơp 5 thôi anh/chị ạ.HÃy vào trang và kết bạn với em nhé
a/ Ta có \(\widehat{NCE}=\widehat{ACB}\) (góc đối đỉnh) mà \(\widehat{ACB}=\widehat{ABC}\) (do tg ABC cân tại A) \(\Rightarrow\widehat{ABC}=\widehat{NCE}\)
Xét tg vuông MBD và tg vuông NCE có
BD=CE (đề bài) và \(\widehat{ABC}=\widehat{NCE}\left(cmt\right)\) => tg MBD = tg NCE (hai tg vuông có cạnh góc vuông và 1 góc nhọn tương ứng = nhau thì bằng nhau) => MD=NE
b/ Xét tứ giác MEND có
\(MD\perp BC;NE\perp BC\) => MD//NE
MD=NE (cmt)
=> Tứ giác MEND là hình bình hành (Tứ giác có cặp cạnh đối song song và bằng nhau thì tứ giác đó là hbh)
MN và DE là 2 đường chéo của hbh MEND => I là trung điểm của DE (trong hbh 2 đường chéo cắt nhau tại trung điểm mỗi đường)
c/ ta có
\(\widehat{ABC}=\widehat{ACB}\)
\(\widehat{ABO}=\widehat{ABC}+\widehat{CBO}=90^o\)
\(\widehat{ACO}=\widehat{ACB}+\widehat{BCO}=90^o\)
\(\Rightarrow\widehat{CBO}=\widehat{BCO}\) => tam giác BOC cân tại O => BO=CO
Xét tg vuông ABO và tg vuông ACO có
AB=AC (Do tg ABC cân tại A)
BO=CO (cmt)
\(\widehat{ABO}=\widehat{ACO}=90^o\)
=> tg ABO = tg ACO (c.g.c) \(\Rightarrow\widehat{BAO}=\widehat{CAO}\) => AO là phân giác của \(\widehat{BAC}\)
=> BO là đường trung trực của BC (Trong tg cân đường phân giác của góc ở đỉnh đồng thời là đường cao, đường trung trực)