tìm x
(x+7)^6=144X(x+7)^4
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
b,
+ Với \(x=0\) \(\Rightarrow PTVN\)
+ Với \(x\ne0\), chia cả 2 vế cho \(x^2\) :
\(PT\Leftrightarrow x^2-16x+46+\frac{144}{x}+\frac{81}{x^2}=0\)
\(\Leftrightarrow\left(x^2+\frac{81}{x^2}\right)-16\left(x-\frac{9}{x}\right)+46=0\)
Đặt \(x-\frac{9}{x}=t\Rightarrow t^2=x^2+\frac{81}{x^2}-18\)
\(\Leftrightarrow t^2+18-16t+46=0\)
\(\Leftrightarrow t^2-16t+64=0\Rightarrow t=8\)
\(\Leftrightarrow x-\frac{9}{x}=8\Leftrightarrow x^2-8x-9=0\) \(\Rightarrow\left[{}\begin{matrix}x=-1\\x=9\end{matrix}\right.\) (t/m)
cậu xem làm được mấy bài kia không làm giùm với (đang gấp) :))
\( a)2x - 3 = 3x - 7\\ \Leftrightarrow 2x - 3x = - 7 + 3\\ \Leftrightarrow - x = - 4\\ \Leftrightarrow x = 4\\ b)x - \left( {6 - 5x} \right) = 2\left( {x - 1} \right) + 12\\ \Leftrightarrow 6x - 6 = 2x - 2 + 12\\ \Leftrightarrow 6x - 2x = 10 + 6\\ \Leftrightarrow 4x = 16\\ \Leftrightarrow x = 4\\ c){x^4} - 144x = 2{x^2} + 1295\\ \Leftrightarrow {x^4} - 2{x^2} - 144x - 1295 = 0\\ \Leftrightarrow \left( {x + 5} \right)\left( {{x^3} - 5{x^2} + 23x - 259} \right) = 0\\ \Leftrightarrow \left( {x + 5} \right)\left( {x - 7} \right)\left( {{x^2} + 2x + 37} \right) = 0\\ \Leftrightarrow \left[ \begin{array}{l} x = - 5\\ x = 7\\ {x^2} + 2x + 37 = 0\left( {vn} \right) \end{array} \right. \)
a) \(2x-3=3x-7\)
\(\Leftrightarrow x=4\)
b) \(x-\left(6-5x\right)=2\left(x-1\right)+12\)
\(\Leftrightarrow x-6+5x=2x-2+12\)
\(\Leftrightarrow\)\(4x=16\)
\(\Leftrightarrow x=4\)
c) \(x^4-144x=x^2+1295\)
\(\Leftrightarrow x^4-x^2-144x-1295=0\)
\(\Leftrightarrow\left(x^4+2x^2+1\right)-\left(4x^2+144x+1295\right)=0\)
\(\Leftrightarrow\left(x^2+1\right)^2-\left(2x+36\right)^2=0\)
\(\Leftrightarrow\left(x^2+1+2x+36\right)\left(x^2+1-2x-36\right)=0\)
\(\Leftrightarrow\left(x^2+2x+37\right)\left(x^2-2x-35\right)=0\)
\(\Leftrightarrow\left(x^2+2x+1+36\right)\left(x^2+2x-7x-35\right)=0\)
\(\Leftrightarrow\left[\left(x+1\right)^2+36\right]\left[\left(x+5\right)\left(x-7\right)\right]=0\)
do \(\left(x+1\right)^2+36\ge36\forall x\)
\(\Rightarrow\left[{}\begin{matrix}x+5=0\\x-7=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=-5\\x=7\end{matrix}\right.\)
Vậy/...
d: \(x\left(x+1\right)\left(x^2+x+1\right)=42\left(1\right)\)
=>\(\left(x^2+x\right)\left(x^2+x+1\right)=42\)
Đặt \(a=x^2+x\)
Phương trình (1) sẽ trở thành \(a\left(a+1\right)=42\)
=>\(a^2+a-42=0\)
=>(a+7)(a-6)=0
=>\(\left(x^2+x+7\right)\left(x^2+x-6\right)=0\)
mà \(x^2+x+7=\left(x+\dfrac{1}{2}\right)^2+\dfrac{27}{4}>0\forall x\)
nên \(x^2+x-6=0\)
=>(x+3)(x-2)=0
=>\(\left[{}\begin{matrix}x+3=0\\x-2=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-3\\x=2\end{matrix}\right.\)
e: \(\left(x-1\right)\left(x-3\right)\left(x+5\right)\left(x+7\right)-297=0\left(2\right)\)
=>\(\left(x-1\right)\left(x+5\right)\left(x-3\right)\left(x+7\right)-297=0\)
=>\(\left(x^2+4x-5\right)\left(x^2+4x-21\right)-297=0\)
Đặt \(b=x^2+4x\)
Phương trình (2) sẽ trở thành \(\left(b-5\right)\left(b-21\right)-297=0\)
=>\(b^2-26b+105-297=0\)
=>\(b^2-26b-192=0\)
=>(b-32)(b+6)=0
=>\(\left(x^2+4x-32\right)\left(x^2+4x+6\right)=0\)
mà \(x^2+4x+6=\left(x+2\right)^2+2>0\forall x\)
nên \(x^2+4x-32=0\)
=>(x+8)(x-4)=0
=>\(\left[{}\begin{matrix}x+8=0\\x-4=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-8\\x=4\end{matrix}\right.\)
f: \(x^4-2x^2-144x-1295=0\)
=>\(x^4-7x^3+7x^3-49x^2+47x^2-329x+185x-1295=0\)
=>\(\left(x-7\right)\cdot\left(x^3+7x^2+47x+185\right)=0\)
=>\(\left(x-7\right)\left(x+5\right)\left(x^2+2x+37\right)=0\)
mà \(x^2+2x+37=\left(x+1\right)^2+36>0\forall x\)
nên (x-7)(x+5)=0
=>\(\left[{}\begin{matrix}x-7=0\\x+5=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=7\\x=-5\end{matrix}\right.\)
3) \(x^2-7x+6=0\)
\(\Leftrightarrow x^2-6x-x+6=0\)
\(\Leftrightarrow x\left(x-6\right)-\left(x-6\right)=0\)
\(\Leftrightarrow\left(x-6\right)\left(x-1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x-6=0\\x-1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=6\\x=1\end{matrix}\right.\)
S=\(\left\{6;1\right\}\)
\(\)
a)(x-2)(x+2)(x^2-10)=72
<=>(x^2-4)(x^2-10)=72
<=>x^4-14x^2+40=72
<=>x^4-14x^2-32=0
<=>x^4-16x^2+2x^2-32=0
<=>x^2(x^2-16)+2(x^2-16)=0
<=>(x^2-16)(x^2+2)=0
<=>(x-4)(x+4)(x^2+2)=0
<=>x-4=0 hoac x+4=0 (vi x^2+2>0 voi moi x)
<=>x=4,x=-4
S={4,-4}
a)(x-2))x+2)(x^2-10)=72
=(x^2-4)(x^2-10)=72
Đặt x^2-7 là t
Phương trình trở thành (t+3)(t-3)=72
t^2-9=72
t^2=81
suy ra t= cộng trừ 9
*t=9
x^2-7=9
x^2=16
suy ra x=cộng trừ 4
*t=-9
x^2-7=-9
x^2=-2
suy ra x không xác định
vậy S={cộng trừ 4}
1a) \(\frac{x-3}{x+7}=\frac{-5}{-6}\)
=> \(\frac{x-3}{x+7}=\frac{5}{6}\)
=> (x - 3).6 = 5.(x + 7)
=> 6x - 18 = 5x + 35
=> 6x - 5x = 35 + 18
=> x = 53
b) \(\frac{x-7}{x+3}=\frac{4}{3}\)
=> (x - 7). 3 = (x + 3). 4
=> 3x - 21 = 4x + 12
=> 3x - 4x = 12 + 21
=> -x = 33
=> x = -33
c) \(\frac{x-10}{6}=-\frac{5}{18}\)
=> (x - 10) . 18 = -5 . 6
=> 18x - 180 = -30
=> 18x = -30 + 180
=> 18x = 150
=> x = 150 : 18 = 25/3
d) \(\frac{x-2}{4}=\frac{25}{x-2}\)
=> (x - 2)(x - 2) = 25 . 4
=> (x - 2)2 = 100
=> (x - 2)2 = 102
=> \(\orbr{\begin{cases}x-2=10\\x-2=-10\end{cases}}\)
=> \(\orbr{\begin{cases}x=12\\x=-8\end{cases}}\)
e) \(\frac{7}{x}=\frac{x}{28}\)
=> 7 . 28 = x . x
=> 196 = x2
=> x2 = 142
=> \(\orbr{\begin{cases}x=14\\x=-14\end{cases}}\)
f) \(\frac{40+x}{77-x}=\frac{6}{7}\)
=> (40 + x) . 7 = (77 - x).6
=> 280 + 7x = 462 - 6x
=> 280 - 462 = -6x + 7x
=> -182 = x
=> x = -182
a) Đặt x -3 = a
<=> a(a+2)(a+8)(a+10) - 297=0
<=> \(\left[a\left(a+10\right)\right]\left[\left(a+2\right)\left(a+8\right)\right]\)-297=0
<=> \(\left(a^2+10a\right)\left(a^2+10a+16\right)-297=0\)
Đặt \(a^2+10a=b\)
\(b^2+16b-297=0\)
\(\Rightarrow\left[{}\begin{matrix}b=11\\b=-27\end{matrix}\right.\)\(b=11\Rightarrow\left[{}\begin{matrix}a=1\\a=-11\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x=4\\x=-8\end{matrix}\right.\)
b= -27 \(\Rightarrow a=\varnothing\Rightarrow x=\varnothing\)
b) bấm máy ra nhân tử chung :D
c)
\(\Leftrightarrow\left(\frac{1927-X}{91}+1\right)+\left(\frac{1925-x}{93}+1\right)+...=0\)
\(\Leftrightarrow\frac{2018-x}{91}+\frac{2018-x}{93}+\frac{2018-x}{95}+\frac{2018-x}{97}=0\)
\(\Leftrightarrow\left(2018-x\right)\left(\frac{1}{91}+\frac{1}{93}+\frac{1}{95}+\frac{1}{97}\right)=0\)
<=> x = 2018
d) \(\Leftrightarrow\left(\frac{x-85}{15}-1\right)+\left(\frac{x-74}{13}-2\right)+\left(\frac{x-67}{11}-3\right)+\left(\frac{x-64}{9}-3\right)=0\)
giống câu c
bn lấy bài này ở đâu, làm sao lop8 giải dc, chị tui lop9 giai
a) đặt t = x2 +x
t2 +4t -12 =0
t2 +4t +4 - 4 -12=0
(t+2 +4)( t +2-4) =0
t+6=0 => t =-6
t-2 =0 => t = 2
rui bn thay t = x2+x giải nhé
\(8x-48+4x-12-14=-x+4\)
\(\Leftrightarrow12x-75=-x+4\Leftrightarrow13x=79\Leftrightarrow x=\dfrac{79}{13}\)
\(-7\left(8-x\right)-6\left(x+9\right)=20-x\Leftrightarrow-56+7x-6x-54=20-x\)
\(\Leftrightarrow2x=130\Leftrightarrow x=65\)
\(9x-63-80+60x=-7x+15\Leftrightarrow76x=158\Leftrightarrow x=\dfrac{79}{38}\)
\(-96-16x-60+30x=-40x-16\Leftrightarrow54x=140\Leftrightarrow x=\dfrac{70}{27}\)
\(17x-102-14x-28=4x-24-2x+4\Leftrightarrow x=110\)