K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 8 2019

b,

+ Với \(x=0\) \(\Rightarrow PTVN\)

+ Với \(x\ne0\), chia cả 2 vế cho \(x^2\) :

\(PT\Leftrightarrow x^2-16x+46+\frac{144}{x}+\frac{81}{x^2}=0\)

\(\Leftrightarrow\left(x^2+\frac{81}{x^2}\right)-16\left(x-\frac{9}{x}\right)+46=0\)

Đặt \(x-\frac{9}{x}=t\Rightarrow t^2=x^2+\frac{81}{x^2}-18\)

\(\Leftrightarrow t^2+18-16t+46=0\)

\(\Leftrightarrow t^2-16t+64=0\Rightarrow t=8\)

\(\Leftrightarrow x-\frac{9}{x}=8\Leftrightarrow x^2-8x-9=0\) \(\Rightarrow\left[{}\begin{matrix}x=-1\\x=9\end{matrix}\right.\) (t/m)

9 tháng 8 2019

cậu xem làm được mấy bài kia không làm giùm với (đang gấp) :))

1 tháng 4 2020

\( a)2x - 3 = 3x - 7\\ \Leftrightarrow 2x - 3x = - 7 + 3\\ \Leftrightarrow - x = - 4\\ \Leftrightarrow x = 4\\ b)x - \left( {6 - 5x} \right) = 2\left( {x - 1} \right) + 12\\ \Leftrightarrow 6x - 6 = 2x - 2 + 12\\ \Leftrightarrow 6x - 2x = 10 + 6\\ \Leftrightarrow 4x = 16\\ \Leftrightarrow x = 4\\ c){x^4} - 144x = 2{x^2} + 1295\\ \Leftrightarrow {x^4} - 2{x^2} - 144x - 1295 = 0\\ \Leftrightarrow \left( {x + 5} \right)\left( {{x^3} - 5{x^2} + 23x - 259} \right) = 0\\ \Leftrightarrow \left( {x + 5} \right)\left( {x - 7} \right)\left( {{x^2} + 2x + 37} \right) = 0\\ \Leftrightarrow \left[ \begin{array}{l} x = - 5\\ x = 7\\ {x^2} + 2x + 37 = 0\left( {vn} \right) \end{array} \right. \)

1 tháng 4 2020

a) \(2x-3=3x-7\)

\(\Leftrightarrow x=4\)

b) \(x-\left(6-5x\right)=2\left(x-1\right)+12\)

\(\Leftrightarrow x-6+5x=2x-2+12\)

\(\Leftrightarrow\)\(4x=16\)

\(\Leftrightarrow x=4\)

c) \(x^4-144x=x^2+1295\)

\(\Leftrightarrow x^4-x^2-144x-1295=0\)

\(\Leftrightarrow\left(x^4+2x^2+1\right)-\left(4x^2+144x+1295\right)=0\)

\(\Leftrightarrow\left(x^2+1\right)^2-\left(2x+36\right)^2=0\)

\(\Leftrightarrow\left(x^2+1+2x+36\right)\left(x^2+1-2x-36\right)=0\)

\(\Leftrightarrow\left(x^2+2x+37\right)\left(x^2-2x-35\right)=0\)

\(\Leftrightarrow\left(x^2+2x+1+36\right)\left(x^2+2x-7x-35\right)=0\)

\(\Leftrightarrow\left[\left(x+1\right)^2+36\right]\left[\left(x+5\right)\left(x-7\right)\right]=0\)

do \(\left(x+1\right)^2+36\ge36\forall x\)

\(\Rightarrow\left[{}\begin{matrix}x+5=0\\x-7=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=-5\\x=7\end{matrix}\right.\)

Vậy/...

d: \(x\left(x+1\right)\left(x^2+x+1\right)=42\left(1\right)\)

=>\(\left(x^2+x\right)\left(x^2+x+1\right)=42\)

Đặt \(a=x^2+x\)

Phương trình (1) sẽ trở thành \(a\left(a+1\right)=42\)

=>\(a^2+a-42=0\)

=>(a+7)(a-6)=0

=>\(\left(x^2+x+7\right)\left(x^2+x-6\right)=0\)

mà \(x^2+x+7=\left(x+\dfrac{1}{2}\right)^2+\dfrac{27}{4}>0\forall x\)

nên \(x^2+x-6=0\)

=>(x+3)(x-2)=0

=>\(\left[{}\begin{matrix}x+3=0\\x-2=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-3\\x=2\end{matrix}\right.\)

e: \(\left(x-1\right)\left(x-3\right)\left(x+5\right)\left(x+7\right)-297=0\left(2\right)\)

=>\(\left(x-1\right)\left(x+5\right)\left(x-3\right)\left(x+7\right)-297=0\)

=>\(\left(x^2+4x-5\right)\left(x^2+4x-21\right)-297=0\)

Đặt \(b=x^2+4x\)

Phương trình (2) sẽ trở thành \(\left(b-5\right)\left(b-21\right)-297=0\)

=>\(b^2-26b+105-297=0\)

=>\(b^2-26b-192=0\)

=>(b-32)(b+6)=0

=>\(\left(x^2+4x-32\right)\left(x^2+4x+6\right)=0\)

mà \(x^2+4x+6=\left(x+2\right)^2+2>0\forall x\)

nên \(x^2+4x-32=0\)

=>(x+8)(x-4)=0

=>\(\left[{}\begin{matrix}x+8=0\\x-4=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-8\\x=4\end{matrix}\right.\)

f: \(x^4-2x^2-144x-1295=0\)

=>\(x^4-7x^3+7x^3-49x^2+47x^2-329x+185x-1295=0\)

=>\(\left(x-7\right)\cdot\left(x^3+7x^2+47x+185\right)=0\)

=>\(\left(x-7\right)\left(x+5\right)\left(x^2+2x+37\right)=0\)

mà \(x^2+2x+37=\left(x+1\right)^2+36>0\forall x\)

nên (x-7)(x+5)=0

=>\(\left[{}\begin{matrix}x-7=0\\x+5=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=7\\x=-5\end{matrix}\right.\)

31 tháng 5 2018

3) \(x^2-7x+6=0\)

\(\Leftrightarrow x^2-6x-x+6=0\)

\(\Leftrightarrow x\left(x-6\right)-\left(x-6\right)=0\)

\(\Leftrightarrow\left(x-6\right)\left(x-1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x-6=0\\x-1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=6\\x=1\end{matrix}\right.\)

S=\(\left\{6;1\right\}\)

\(\)

1 tháng 2 2016

a)(x-2)(x+2)(x^2-10)=72

<=>(x^2-4)(x^2-10)=72

<=>x^4-14x^2+40=72

<=>x^4-14x^2-32=0

<=>x^4-16x^2+2x^2-32=0

<=>x^2(x^2-16)+2(x^2-16)=0

<=>(x^2-16)(x^2+2)=0

<=>(x-4)(x+4)(x^2+2)=0

<=>x-4=0 hoac x+4=0 (vi x^2+2>0 voi moi x)

<=>x=4,x=-4

S={4,-4}

 

 

31 tháng 1 2016

a)(x-2))x+2)(x^2-10)=72

=(x^2-4)(x^2-10)=72

Đặt x^2-7 là t

Phương trình trở thành (t+3)(t-3)=72

                                    t^2-9=72

                                    t^2=81

                         suy ra t= cộng trừ 9

*t=9

x^2-7=9

x^2=16

suy ra x=cộng trừ 4

*t=-9

x^2-7=-9

x^2=-2

suy ra x không xác định

vậy S={cộng trừ 4}

19 tháng 3 2019

1a) \(\frac{x-3}{x+7}=\frac{-5}{-6}\)

=> \(\frac{x-3}{x+7}=\frac{5}{6}\)

=> (x - 3).6 = 5.(x + 7)

=> 6x - 18 = 5x + 35

=> 6x - 5x = 35 + 18

=> x = 53

b) \(\frac{x-7}{x+3}=\frac{4}{3}\)

=> (x - 7). 3 = (x + 3). 4

=> 3x - 21 = 4x + 12

=> 3x - 4x = 12 + 21

=> -x = 33

=> x = -33

c) \(\frac{x-10}{6}=-\frac{5}{18}\)

=> (x - 10) . 18 = -5 . 6

=> 18x - 180 = -30

=> 18x = -30 + 180

=> 18x = 150

=> x = 150 : 18 = 25/3

19 tháng 3 2019

d) \(\frac{x-2}{4}=\frac{25}{x-2}\)

=> (x - 2)(x - 2) = 25 . 4

=> (x - 2)2 = 100

=> (x - 2)2 = 102

=> \(\orbr{\begin{cases}x-2=10\\x-2=-10\end{cases}}\)

=> \(\orbr{\begin{cases}x=12\\x=-8\end{cases}}\)

e) \(\frac{7}{x}=\frac{x}{28}\)

=> 7 . 28 = x . x

=> 196 = x2

=> x2 = 142

=> \(\orbr{\begin{cases}x=14\\x=-14\end{cases}}\)

f) \(\frac{40+x}{77-x}=\frac{6}{7}\)

=> (40 + x) . 7 = (77 - x).6

=> 280 + 7x = 462 - 6x

=> 280 - 462 = -6x + 7x

=> -182 = x

=> x = -182

4 tháng 2 2020

a) Đặt x -3 = a

<=> a(a+2)(a+8)(a+10) - 297=0

<=> \(\left[a\left(a+10\right)\right]\left[\left(a+2\right)\left(a+8\right)\right]\)-297=0

<=> \(\left(a^2+10a\right)\left(a^2+10a+16\right)-297=0\)

Đặt \(a^2+10a=b\)

\(b^2+16b-297=0\)

\(\Rightarrow\left[{}\begin{matrix}b=11\\b=-27\end{matrix}\right.\)\(b=11\Rightarrow\left[{}\begin{matrix}a=1\\a=-11\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x=4\\x=-8\end{matrix}\right.\)

b= -27 \(\Rightarrow a=\varnothing\Rightarrow x=\varnothing\)

4 tháng 2 2020

b) bấm máy ra nhân tử chung :D

c)

\(\Leftrightarrow\left(\frac{1927-X}{91}+1\right)+\left(\frac{1925-x}{93}+1\right)+...=0\)

\(\Leftrightarrow\frac{2018-x}{91}+\frac{2018-x}{93}+\frac{2018-x}{95}+\frac{2018-x}{97}=0\)

\(\Leftrightarrow\left(2018-x\right)\left(\frac{1}{91}+\frac{1}{93}+\frac{1}{95}+\frac{1}{97}\right)=0\)

<=> x = 2018

d) \(\Leftrightarrow\left(\frac{x-85}{15}-1\right)+\left(\frac{x-74}{13}-2\right)+\left(\frac{x-67}{11}-3\right)+\left(\frac{x-64}{9}-3\right)=0\)

giống câu c

9 tháng 8 2016

bn lấy bài này ở đâu, làm sao lop8 giải dc, chị tui lop9 giai 

a) đặt t = x2 +x 

t2 +4t -12 =0

t2 +4t +4 - 4 -12=0

(t+2 +4)( t +2-4) =0

t+6=0 => t =-6

t-2 =0 => t = 2

rui bn thay t = x2+x giải nhé

9 tháng 8 2016

ai giải giùm milk vs\

16 tháng 2 2022

\(8x-48+4x-12-14=-x+4\)

\(\Leftrightarrow12x-75=-x+4\Leftrightarrow13x=79\Leftrightarrow x=\dfrac{79}{13}\)

\(-7\left(8-x\right)-6\left(x+9\right)=20-x\Leftrightarrow-56+7x-6x-54=20-x\)

\(\Leftrightarrow2x=130\Leftrightarrow x=65\)

\(9x-63-80+60x=-7x+15\Leftrightarrow76x=158\Leftrightarrow x=\dfrac{79}{38}\)

\(-96-16x-60+30x=-40x-16\Leftrightarrow54x=140\Leftrightarrow x=\dfrac{70}{27}\)

\(17x-102-14x-28=4x-24-2x+4\Leftrightarrow x=110\)