Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔMIP và ΔKIN có
IM=IK
\(\widehat{MIP}=\widehat{KIN}\)
IP=IN
Do đó: ΔMIP=ΔKIN
c: Xét ΔMEK có
H là trung điểm của ME
I là trung điểm của MK
Do đó: HI là đường trung bình
=>HI//EK và HI=EK/2
Xét ΔMPE có
PH là đường cao
PH là đường trung tuyến
Do đó: ΔMPE cân tại P
Suy ra: PM=PE(1)
Xét tứ giác MNKP có
I là trung điểm của MK
I là trung điểm của NP
Do đó: MNKP là hình bình hành
Suy ra: NK=MP(2)
Từ (1) và (2) suy ra NK=PE
a: Xét ΔIQM và ΔINK có
IQ=IN
góc QIM=góc NIK
IM=IK
=>ΔIQM=ΔINK
b: ΔIQM=ΔINK
=>góc IQM=góc INK
=>QM//NK
c: Xét tứ giác MNKQ có
I là trung điểm chung của MK và NQ
góc QMN=90 độ
Do đó: MNKQ là hình chữ nhật
=>MK=QN
a) Xét △MIQ và △NIP ta có:
IM=IN (gt)
∠MIQ=∠NIP(2 góc đối đỉnh)
MQ=MP (gt)
Vậy : △MIQ = △NIP (c.g.c)
Vậy: QM = NP (2 cạnh tương ứng)
⇒ ∠MQI = ∠IPN (2 góc tương ứng) mà 2 góc này nằm ở vị trí so le trong
Vậy : QM // NP
b) Xét △MEK và △PEN ta có:
EM = EP (gt)
∠MEK =∠PEN (2 góc đối đỉnh)
EK = EN (gt)
⇒ △MEK = △PEN (c.g.c)
⇒ ∠EMK = ∠EPN (2 góc tương ứng) mà 2 góc này nằm ở vị trí so le trong
Vậy: MK//PN
c) Từ câu a và câu b, ta có : QM//NP và MK//PN
Vậy M,Q,K thẳng hàng.(1)
Ta có:△MEK=△PEN (theo câu b)
⇒ MK=NP (2 cạnh tương ứng)
⇒ QM=NP (theo câu a) và MK=NP(chứng minh trên)⇒QM=MK (2)
Từ (1) và (2), suy ra: M là trung điểm của đoạn thẳng QK.
Mình ko biết là A trog câu c) ở đâu nên mình đổi thành Q nha!
a) Xét tam giác MNI và tam giác MDI có :
MN = MD ( gt )
NI = ID ( gt )
MI chung
=> đpcm
b) Vì tam giác MNI = tam giác MDI ( cmt )
=> góc NMI = góc DMI ( 2 g.t.ứ )
Xét tam giác MNK và tam giác MDK có :
MN = MD ( gt )
góc NMI = góc DMI ( cmt )
MK chung )
=> tam giác MNK = tam giác MDK ( c-g-c )
=> NK = DK ( 2 c.t.ứ )
=> đpcm
c) Chứng minh tam giác NEK = tam giác DQK ( c-g-c )
=> góc NKE = góc DKQ ( 2 g.t.ứ )
Mặt khác ta có : góc NKD + góc DKQ = 1800 ( kề bù )
=> góc NKD + góc NKE = 1800
Hay góc DKE = 1800
=> D, E, K thẳng hàng ( đpcm )
Bạn kham khảo nha:
Cho tam giác đều ABC. Trên tia đối tia AB lấy điểm D và ... - Online Math
a) Xét 2 \(\Delta MNQ\)và \(\Delta PKQ\) có:
\(\hept{\begin{cases}KQ=QN\left(gt\right)\\PQ=QM\left(gt\right)\\\widehat{KQP}=\widehat{NQM\left(đ^2\right)}\end{cases}}\)
\(\Rightarrow\Delta MNQ=\Delta PKQ\left(c.g.c\right)\left(ĐPCM\right)\)
b) theo a, ta có : \(\Delta MNQ=\Delta PKQ\)
\(\Rightarrow\widehat{QPK}=\widehat{QMN}\)( 2 góc tương ứng )
Mà 2 góc này nằm ở vị trí so le trong của MN và PK :
\(\Rightarrow MN//PK\left(DHNB\right)\left(ĐPCM\right)\)