Tìm x
a. (x-2)×(x+3)<0 với x€Z
b. (1/15+1/35+1/63+1/99+1/143+1/195) ×5x=5+1/3
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
<=> \(\left(\frac{1}{3\cdot5}+\frac{1}{5.7}+...+\frac{1}{13\cdot15}\right)+x=\frac{17}{15}\)
<=> \(\frac{1}{2}\cdot\left(\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-...-\frac{1}{15}\right)+x=\frac{17}{15}\)
<=>\(\frac{1}{2}\cdot\left(\frac{1}{3}-\frac{1}{15}\right)+x=\frac{17}{15}\)
<=> \(\frac{2}{15}+x=\frac{17}{15}\)
=> x = 1
(1/3.5+1/5.7+1/7.9+1/9.11+1/11.13+1/13.15)+x=17/15
[2.(1/3-1/5+1/5-1/7+...+1/13-1/15)]+x=17/15
[2.(1/3-1/15)]+x=17/15
(2.4/15)+x=17/15
6/15+x=17/15
x=17/15-6/15
x=11/15
a) \(\frac{1}{15}+\frac{1}{35}+...+\frac{1}{195}\)
= \(\frac{1}{3.5}+\frac{1}{5.7}+...+\frac{1}{13.15}\)
= \(\frac{1}{2}.\left(\frac{2}{3.5}+\frac{2}{5.7}+...+\frac{2}{13.15}\right)\)
= \(\frac{1}{2}.\left(\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{13}-\frac{1}{15}\right)\)
= \(\frac{1}{2}.\left(\frac{1}{3}-\frac{1}{15}\right)\)
= \(\frac{1}{2}.\frac{4}{15}\)
= \(\frac{2}{15}\)
a) ( 1 + 3 + 5 + 7 + ....... + 2007 + 2009 + 2011 ) x ( 125125 x 127 - 127127 x 125 )
vì ( 125125 x 127 - 127127 x 125 ) =[125125 x (125+2)] - 127127 x 125 ) =>125125 x (125+2)=125.125125+125125.2=125125.125+250250=125125.125+125.2002=125.(125125+2002)=125.127127
=> ( 125125 x 127 - 127127 x 125 )=127127.125-127127.125=0
=> (1 + 3 + 5 + 7 + ....... + 2007 + 2009 + 2011 ) x ( 125125 x 127 - 127127 x 125 ) =0
a) ( 1 + 3 + 5 + 7 + ....... + 2007 + 2009 + 2011 ) x ( 125125 x 127 - 127127 x 125 )
= ( 1 + 3 + 5 + 7 + ....... + 2007 + 2009 + 2011 ) x 0
= 0
b, \(\frac{1}{3}\)+ \(\frac{1}{15}\)+ \(\frac{1}{35}\)+ \(\frac{1}{63}\)+ \(\frac{1}{99}\)+ \(\frac{1}{143}\)+ \(\frac{1}{195}\)
= \(\frac{1}{3}\)+ \(\frac{1}{3}\)- \(\frac{1}{5}\)+ \(\frac{1}{5}\)- \(\frac{1}{7}\)+\(\frac{1}{7}\)- \(\frac{1}{9}\)+...........+\(\frac{1}{13}\)- \(\frac{1}{15}\)
= \(\frac{1}{3}\)- \(\frac{1}{15}\)
= \(\frac{4}{15}\)
a) \(A=\dfrac{1}{3}+\dfrac{1}{5}+\dfrac{1}{35}+\dfrac{1}{63}+\dfrac{1}{99}+\dfrac{1}{143}\)
\(A=\dfrac{1}{1.3}+\dfrac{1}{3.5}+\dfrac{1}{5.7}+\dfrac{1}{7.9}+\dfrac{1}{9.10}+\dfrac{1}{143}\)
\(A=\dfrac{1}{2}.\left(1-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{9}+\dfrac{1}{9}-\dfrac{1}{10}\right)+\dfrac{1}{143}\)
\(A=\dfrac{1}{2}.\left(1-\dfrac{1}{100}\right)+\dfrac{1}{143}=\dfrac{1}{2}.\dfrac{99}{100}+\dfrac{1}{143}=\dfrac{99}{200}+\dfrac{1}{143}=\dfrac{99.143+200.1}{200.143}=\dfrac{14157+200}{28600}=\dfrac{14357}{28600}\)
b) \(x+\left(x+1\right)+\left(x+2\right)+...+\left(x+99\right)=14950\)
\(\Rightarrow x+x+...+x+\left(1+2+...+99\right)=14950\)
\(\Rightarrow100x+\left(\left(99+1\right):2\right).99:2=14950\)
\(\Rightarrow100x+2475=14950\Rightarrow100x=12475\Rightarrow x=\dfrac{12475}{100}=\dfrac{499}{4}\)
Giải:
Đặt A = 1/3+1/15+1/35+1/63+1/99+1/143+1/195
2A= 2/(1.3) + 2/(3.5) + 2/(5.7) + 2/(7.9)+2/(9.11) + 2/(11.13)+2/(13.15)
2A=1/1-1/3+1/3-1/5+1/5-1/7+1/7-1/9+1/9...
2A=1/1-1/15=14/15
Vậy A=14/15 : 2 = 7/15
Nhấn đúng mk nha Tran Dan
\(\frac{1}{3}+\frac{1}{15}+\frac{1}{35}+..+\frac{1}{143}+\frac{1}{195}\)
=\(\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+..+\frac{1}{13.15}\)
= \(\frac{1}{1}-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+..+\frac{1}{13}-\frac{1}{15}\)
= \(1-\frac{1}{15}=\frac{14}{15}\)
tick đúng nha
Đặt A = 1 / 3 + 1 / 15 + 1 / 35 + 1 / 63 + 1 / 99 + 1 / 143 + 1 / 195
A = 1 / 1 x 3 + 1 / 3 x 5 + 1 / 5 x 7 +1 / 7 x 9 + 1 / 9 x 11 + 1 / 11 x 13 + 1 / 13 x 15
A x 2 = 2 / 1 x 3 + 2 / 3 x 5 +2/ 5 x 7 + 2/ 7 x 9 + 2 / 9 x 11 + 2/ 11 x 13 +2 / 13 x 15
A x 2 = 1 / 1 - 1 / 3 + 1 / 3 - 1 /5 + 1 / 5 - 1 / 7 + 1 / 7 - 1 / 9 + 1 / 9 - 1 / 11 + 1 / 11 - 1 / 13 + 1 / 13 - 1 / 15
A x 2 = 1 / 1 - 1 / 15
A x 2 = 14 / 15
A = 7 / 15
=1/3+1/3.5+1/5.7+1/7.9+1/9.11+1/11.13+1/13.15
=1-1/3+1/3-1/5+1/5-1/7+1/7-1/9+1/9-1/11+1/11-1/13+1/13-1/15
=1-1/15
=14/15
vậy đáp số là 14/15
\(\frac{1}{3}+\frac{1}{15}+\frac{1}{35}+\frac{1}{63}+\frac{1}{99}+\frac{1}{143}+\frac{1}{195}\)
\(=\frac{1}{1\cdot3}+\frac{1}{3\cdot5}+\frac{1}{5\cdot7}+...+\frac{1}{13\cdot15}\)
\(=\frac{1}{2}\left(\frac{2}{1\cdot3}+\frac{2}{3\cdot5}+\frac{2}{5\cdot7}+...+\frac{2}{13\cdot15}\right)\)
\(=\frac{1}{2}\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{13}-\frac{1}{15}\right)\)
\(=\frac{1}{2}\left(1-\frac{1}{15}\right)\)
\(=\frac{1}{2}\cdot\frac{14}{15}\)
\(=\frac{7}{15}\)
Sửa đề chút nhé:
\(\left(1+3+5+7+...+2009+2011\right).\left(125125.127-127127.125\right)\)
\(=\left(1+3+5+7+...+2009+2011\right).\left(125.1001.127-127.1001.125\right)\)
\(=\left(1+3+5+7+...+2009+2011\right).0\)
\(=0\)
Ý b tham khảo bài bạn nguyen thi thuy linh nhé
a) (x-2)(x+3) <0 => x-2 và x+3 phải trái dấu
=> x-2<0 và x+3>0
hoặc x-2>0 và x+3<0
=> x<2 và x>-3 => -3<x<2
hoặc x>2 và x<-3 ( vô lý ) ( loại )
=> x \(\in\) { -2;-1;0;1 }
Đúng 100%, tích nha, please!!