chứng minh rằng số nguyên tố nào khác 2 và 5 đều có dạng 6m + 1 hay 6m - 1
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Trả lời:Bn vào link này nha:
https://olm.vn/hoi-dap/detail/1650013862.html
Chúc bạn hok tốt !
#Tử Thần
gọi chung các số nguyên tố lớn hơn 2 hoặc 3 là p
p là số nguyên tố lớn hơn 2 và 3 nên khi chia p cho 6 sẽ xảy ra các trường hợp sau: p chia hết cho 6, p : 6 dư 1, p : 6 dư 2, p : 6 dư 3, p : 6 dư 4, p : 6 dư 5
=> p sẽ có các dạng sau: 6m; 6m + 1; 6m + 2; 6m + 3; 6m + 4; 6m +5 hay 6m - 1
Ta thấy: 6m chia hết cho 6; 6m + 2 và 6m + 4 chia hết cho 2; 6m + 3 chia hết cho 3; các dạng trên là hợp số
Mà p là số nguyên tố lơn hơn 2 và 3 => p chỉ có 1 trong 2 dạng : 6m + 1 và 6m - 1
Vậy các số nguyên tố lớn hơn 2 hoặc 3 đều có thể viết được dưới dạng 6m+1 hoặc 6m-1
Các số nguyên tố khác 2 và 3 có thể dạng:
6m+1
6m+2
6m+3
6m+4
6m+5
Thấy: 6m-1 cũng có dạng 6m+5
Vì 6m+2,6m+4 chia hết cho 2 nên bỏ
Vì 6m+3 chia hết cho 3 nên bỏ nốt
Còn 6m+1 và 6m +5 hay còn là 6m+1 và 6m-1
Từ đó ta có thể khẳng định: mọi số nguyên tố khác 2 và 3 đều có dạng 6m+1 hoặc 6m-1
vì số nguyên tố khác 2 và 3=> số nguyên tố đó là số lẻ
=>số nguyên tố đó có dạng 6m+1;6m+3;6m+5
xét số có dạng 6m+3=3(2m+1) chia hết cho 3(trái giả thuyết)
=>số nguyên tố khác 2 và 3 có dạng 6m+1 hoặc 6m-1
=>đpcm
1. Khi chia một số tự nhiên A lớn hơn 2 cho 4 thì ta được các số dư 0, 1, 2, 3 . Trường hợp số dư là 0 và 2 hai thì A là hợp số, ta không xột chỉ xột trường hợp số dư là 1 hoặc 3
Với mọi trường hợp số dư là 1 ta có A = 4 n ± 1
Với trường hợp số dư là 3 ta có A = 6 n ± 1
Ta có thể viết A = 4m + 4 – 1
= 4(m + 1) – 1
Đặt m + 1 = n, ta có A = 4n – 1
2. Khi chia số tự nhiên A cho 6 ta có các số dư 0, 1, 2, 3, 4, 5. Trường hợp số dư 0, 2, 3, 4. Ta có A chia hết cho 2 hoặc A chia hết cho 3 nên A là hợp số
Trường hợp dư 1 thì A = 6n + 1
Trường hợp dư 5 thì A = 6m + 5
= 6m + 6 – 1
6(m + 1 ) – 1
Đặt m + 1 = n Ta có A = 6n – 1