Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ta có: f(x)=kx
=>f(51x1-2014x2)=k.(51x1-2014x2)=k51x1-2014kx2=51f(x1)-2014f(x2)
Ta có: y = f(x) = kx => f(x1) = kx1 và f(x2) = kx2
Từ đó ta có: f(x1 - x2) = k(x1 - x2) (1)
f(x1) - f(x2) = kx1 - kx2 = k ( x1 - x2) (2)
Từ (1) và (2) => f(x1 - x2) = f(x1) - f(x2)
Xác định hàm số f(x) thoả mãn các điều kiện : f(0) = 0=> hàm số có dạng f(x)=ax; f(2) = 2016 và f(x1)/x1=f(x2)/x2 với x1 và x2 là hai giá trị bất kì khác 0 của x => 2006/2= ax2/x2=>2006x2=2ax2=>a=2006:2=1003 =>a=1003
a: f(x1)+f(x2)=a*x1+a*x2=a(x1+x2)
f(x1+x2)=a*(x1+x2)
=>f(x1)+f(x2)=f(x1+x2)
b: f(kx)=a*kx=ak*x
k*f(x)=k*ax=x*ka
=>f(kx)=k*f(x)
c: f(x1)*f(x2)=f(x1*x2)
=>ax1*ax2=a*(x1*x2)
=>a^2-a=0
=>a=1