K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Xét ΔABC có 

D là trung điểm của AC

E là trung điểm của BC

Do đó; DE là đường trung bình

=>DE//AB

Xét tứ giác ABED có DE//AB

nên ABED là hình thang

mà \(\widehat{DAB}=90^0\)

nên ABED là hình thang vuông

b: Xét tứ giác AECF có 

D là trung điểm của AC

D là trung điểm của FE

Do đó: AECF là hình bình hành

mà EA=EC
nên AECF là hình thoi

c: Đề sai rồi bạn

10 tháng 1 2022

a, xét tam giác ABC có đường t/b ED:

=>ED//AB

xét tứ giác ABED có :

ED//AB 

BAC = 90\(^o\)

vậy ABED là hình thang vuông.

b, vì F đối xứng với E qua D nên:

ED=DF(1)

vì D là trung điểm AC nên:

AD=DC(2)

từ (1) và (2) suy ra :

tứ giác AECF là hình thoi.

c,vì ED //AB 

mà AB vuông góc Ac

=>ED vuông góc AC

<=>EDA là góc vuông 

xét tứ giác ABEH có :

\(EHA=BAC=EDA=90^o\)

vậy ABEH là hình chữ nhật.

a: Xét ΔABC có 

D là trung điểm của AC
E là trung điểm của BC

Do đó: DE là đường trung bình

=>DE//AB và DE=AB/2

Xét tứ giác ADEB có DE//AB

nên ADEB là hình thang

mà \(\widehat{DAB}=90^0\)

nên ADEB là hình thang vuông

b: Xét tứ giác AECF có 

D là trung điểm của AC

D là trung điểm của FE

Do đó: AECF là hình bình hành

mà EA=EC

nên AECF là hình thoi

10 tháng 1 2022

chứng minh D, M, E ?

a: Xét ΔBAC co BI/BA=BD/BC

nên ID//AC và ID=AC/2

=>AIDC là hình thang

mà góc IAC=90 độ

nên AIDC là hình thang vuông

b: Xét tứ giác ADBE có

I là trung điểm chung của AB và DE

DA=DB

Do đó: ADBE là hình thoi

a: Xét tứ giác BECF có

D là trung điểm chung của BC và EF

BE=EC

Do đó: BECF là hình thoi

b: Sửa đề: Tính diện tích BECF

\(BC=\sqrt{10^2-8^2}=6\left(cm\right)\)

DE=AB/2=4cm

=>EF=8cm

\(S_{BECF}=\dfrac{1}{2}\cdot6\cdot8=3\cdot8=24\left(cm^2\right)\)

29 tháng 11 2023

Để chứng minh các phần a, b và c, ta sẽ sử dụng các tính chất của tam giác vuông và hình chữ nhật.

 

a. Ta có tam giác ABC vuông tại A, nên theo định lí trung tuyến, ta có DE là đường trung tuyến của tam giác ABC. Do đó, DE song song với cạnh AC. Tương tự, ta có DF song song với cạnh AB. Vậy DE//AC và DF//AB.

 

b. Ta cần chứng minh AEDF là hình chữ nhật. Đầu tiên, ta thấy DE//AC và DF//AB (theo phần a). Khi đó, ta có:

 

- AD = DC (vì D là trung điểm của BC)

- AE = EB (vì E là trung điểm của AB)

- AF = FC (vì F là trung điểm của AC)

 

Vậy ta có các cạnh đối diện của tứ giác AEDF bằng nhau, do đó AEDF là hình chữ nhật.

 

c. Gọi M là điểm đối xứng của D qua AB. Ta cần chứng minh M đối xứng với N qua A. Để làm điều này, ta sẽ chứng minh AM = AN và góc MAN = góc NAM.

 

- Vì M là điểm đối xứng của D qua AB, nên ta có AM = AD.

- Vì N là điểm đối xứng của D qua AC, nên ta có AN = AD.

 

Do đó, ta có AM = AN.

 

- Ta có góc MAD = góc DAB (vì M là điểm đối xứng của D qua AB)

- Ta có góc NAD = góc DAC (vì N là điểm đối xứng của D qua AC)

 

Vì tam giác ABC vuông tại A, nên góc DAB = góc DAC. Từ đó, ta có góc MAD = góc NAD.

 

Vậy ta có AM = AN và góc MAN = góc NAM, do đó M đối xứng với N qua A.

 

Vậy ta đã chứng minh được M đối xứng với N qua A.

18 tháng 12 2021

a: Xét ΔABC  có 

D là tđiểm của AB

E là tđiểm của AC

Do đó: DE là đường trung bình

=>DE//FC và DE=FC

hay DECF là hình bình hành

26 tháng 12 2021

undefined

Đề câu d lỗi

26 tháng 12 2021

cho em hỏi câu a sao góc MDB và góc CAD lại so le trong vậy ạ?

a: Xét ΔCAB có 

D là trung điểm của AC

E là trung điểm của BC

Do đó: DE là đường trung bình của ΔCAB

Suy ra: DE//AB và \(DE=\dfrac{AB}{2}\)

Xét tứ giác ADEB có DE//AB và \(\widehat{DAB}=90^0\)

nên ADEB là hình thang vuông

b: Ta có: DE//AB và \(DE=\dfrac{AB}{2}\)

mà \(DE=\dfrac{EF}{2}\)

nên EF//AB và EF=AB

hay ABEF là hình bình hành