K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 5 2017

\(\Leftrightarrow3x^2+x\left(2y^2-y-3\right)-\left(2y^2-y-3\right)=0\)

đặt \(\left(2y^2-y-3\right)=m\)với m là số tự nhiên nên phương trình trở thành

\(\Leftrightarrow3x^2+mx-m=0\)

có \(\Delta=m^2+12m=\left(m+6\right)^2-36=k^2\)vì x,y nguyên nên \(\Delta\)là số chính phương

\(\Leftrightarrow\left(m+6-k\right)\left(m+6+k\right)=36\)

m+6-k và m+6+k là ước của 36 ta xét các trường hợp có thể sảy ra (36,6);(18,2);(12,3);(9,4);(6,6).

  1. \(\hept{\begin{cases}m+6+k=36\\m+6-k=1\end{cases}}\Leftrightarrow2m=25\)không thỏa mãn
  2. \(\hept{\begin{cases}m+6+k=18\\m+6-k=2\end{cases}}\Leftrightarrow2m=8\Leftrightarrow m=4\)\(\Rightarrow\Delta=64;2y^2-y-3=4\Leftrightarrow2y^2-y-7=0\)\(\Leftrightarrow\Delta_1=1^2+2.4.7=57\) loại
  3. \(\hept{\begin{cases}m+6+k=12\\m+6-k=3\end{cases}}\Leftrightarrow2m=3\)loại
  4. \(\hept{\begin{cases}m+6+k=9\\m+6-k=4\end{cases}}\Leftrightarrow2m=1\)loại
27 tháng 5 2017

5.\(\hept{\begin{cases}m+6+k=6\\m+6-k=6\end{cases}}\Leftrightarrow2m=0\Leftrightarrow m=0\)

\(2y^2-y-3=0\Leftrightarrow\orbr{\begin{cases}y=-1\\y=\frac{3}{2}\end{cases}}\)\(\Rightarrow y=-1\)

thay m=0 có \(\Delta=0\)phương trình ban đầu trở thành

\(3x^2=0\Leftrightarrow x=0\)

vậy cặp (x,y) nguyên là (0,-1)

DD
9 tháng 10 2021

2) 

\(A=2x^2+2x+y^2-2xy=x^2-2xy+y^2+x^2+2x+1-1\)

\(=\left(x-y\right)^2+\left(x+1\right)^2-1\ge-1\)

Dấu \(=\)khi \(\hept{\begin{cases}x-y=0\\x+1=0\end{cases}}\Leftrightarrow x=y=-1\).

Vậy GTNN của \(A\)là \(-1\)đạt tại \(x=y=-1\).

\(B=2a^2+b^2+c^2-ab+ac+bc\)

\(2B=4a^2+2b^2+2c^2-2ab+2ac+2bc\)

\(=a^2-2ab+b^2+a^2+2ac+c^2+b^2+2bc+c^2+2a^2\)

\(=\left(a-b\right)^2+\left(a+c\right)^2+\left(b+c\right)^2+2a^2\ge0\)

Dấu \(=\)khi \(a=b=c=0\).

Vậy GTNN của \(B\)là \(0\)đạt tại \(a=b=c=0\).

DD
9 tháng 10 2021

1. 

a) \(2x^2+2x+1=x^2+x^2+2x+1=x^2+\left(x+1\right)^2=0\)

\(\Leftrightarrow\hept{\begin{cases}x=0\\x+1=0\end{cases}}\)(vô nghiệm) 

suy ra đpcm

b) \(x^2+y^2+2xy+2y+2x+2=\left(x+y\right)^2+2\left(x+y\right)+1+1=\left(x+y+1\right)^2+1>0\)

c) \(3x^2-2x+1+y^2-2xy+1=x^2-2xy+y^2+x^2-2x+1+x^2+1\)

\(=\left(x-y\right)^2+\left(x-1\right)^2+x^2+1>0\)

d) \(3x^2+y^2+10x-2xy+26=x^2-2xy+y^2+x^2+10x+25+x^2+1\)

\(=\left(x-y\right)^2+\left(x+5\right)^2+x^2+1>0\)

18 tháng 7 2018

Ta có:  2x2 - 2xy + x + y = 14 

       =>2x(x-y)+2x-x+y-1=13

       =>2x(x-y+1)-(x-y+1)=13

       =>(2x-1)(x-y+1)=13

Ta có bảng sau

2x-1  13    1   -1 -13
x-y+1   1 13-13 -1
   x   7  1 0 -6
   y   7 -11-14 -4

Vậy các cặp (x,y) thỏa mãn là(7,7);(1,-11);(0,-14);(-6,-4)

\(PT\Leftrightarrow y^2\left(x^2-6\right)-2xy-x^2=0\)

Xét \(\Delta'=x^2+x^2\left(x^2-6\right)\)\(=x^4-5x^{^2}\)

Do x,y nguyên nên \(\Delta'\)là số chính phương

Đặt \(x^4-5x^2=k^2\left(k\in N\right)\)

\(\Leftrightarrow x^2\left(x^2-5\right)=k^2\)

\(\Rightarrow x^2-5\)là số chính phương

Đặt \(x^2-5=a^2\Leftrightarrow\left(x-a\right)\left(x+a\right)=5\)

Xét TH là tìm được nghiệm nhé :P