Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, \(x^2+2=2\sqrt{x^2+1}\)
\(\Rightarrow x^2+1-2\sqrt{x^2+1}+1=0\)
\(\Rightarrow\left(\sqrt{x^2+1}-1\right)^2=0\)
\(\Rightarrow\sqrt{x^2+1}-1=0\)\(\Rightarrow x^2+1=1\Rightarrow x=0\)
b,\(x^2+x+2y^2+y=2xy^2+xy+3\)
\(\Rightarrow2xy^2+xy-x^2-x-2y^2-y+3=0\)
\(\Rightarrow2y^2\left(x-1\right)+y\left(x-1\right)-x\left(x-1\right)-2\left(x-1\right)+1=0\)
\(\Rightarrow\left(x-1\right)\left(2y^2+y-x-2\right)=-1=1\cdot\left(-1\right)=\left(-1\right)\cdot1\)
đoạn sau bạn tự giái tiếp nhé
a) \(x^2+2=2\sqrt{x^2+1}\)
\(\Leftrightarrow\left(x^2+2\right)^2=\left(2\sqrt{x^2+1}\right)^2\)
\(\Leftrightarrow x^4+4x^2+4=4x^2+4\)
\(\Leftrightarrow x=0\)
5x2+2y+y2-4x-40=0
△=(-4)2-4.5.(2y+y2-40)
△=16-40y-20y2+800
△=-(784+40y+20y2)
△=-(32y+8y+16y2+4y2+16+4+764)
△=-[(4y+4)2+(2y+2)2+764]<0
=>PHƯƠNG TRÌNH VÔ NGHIỆM.
\(xy^2+2xy+x=32y\)
\(x\left(y+1\right)^2=32y\)
\(\Rightarrow x=\frac{32y}{\left(y+1\right)^2}\)
Vì \(\left(y,\left(y+1\right)^2\right)=1\)và \(x\inℤ\)\(\Rightarrow\left(y+1\right)^2\inƯ\left(32\right)=Ư\left(2^5\right)=\left\{2^2;2^4\right\}\)
\(Khi\left(y+1\right)^2=2^2=4\Rightarrow\orbr{\begin{cases}y+1=2\\y+1=-2\end{cases}}\Leftrightarrow\orbr{\begin{cases}y=1\\y=-3\end{cases}}\)
\(\cdot y=1\Rightarrow x=\frac{32.1}{4}=8\)
\(\cdot y=-3\Rightarrow x=\frac{32.\left(-3\right)}{4}=-24\)
\(Khi\left(y+1\right)^2=2^4=16\Rightarrow\orbr{\begin{cases}y+1=4\\y+1=-4\end{cases}\Leftrightarrow\orbr{\begin{cases}y=3\\y=-5\end{cases}}}\)
\(\cdot y=3\Rightarrow x=\frac{32.3}{16}=6\)
\(\cdot y=-5\Rightarrow x=\frac{32.\left(-5\right)}{16}=-10\)
Vậy nghiệm phương trình \(\left(x;y\right)=\left(8;1\right);\left(-24;-3\right);\left(6;3\right);\left(-10;-5\right)\)
Do x,y∈Z và 3x+2y=1 ⇒xy<0
3x+2y=1⇔y= -x+\(\dfrac{1-x}{2}\)
Đặt \(\dfrac{1-x}{2}\)=t (t ∈ Z)
⇒x = 1 - 2t ; y = 3t - 1
khi đó : H = t\(^2\) -3t + |t| -1
nếu t ≥ 0⇒ H =( t -1 ) - 2 ≥ - 2
Dấu "=" xảy ra ⇔t=1
nếu t < 0 ⇒ H = t\(^2\) -4t - 1 > -1> -2
vậy GTNN của H là -2 khi t=1⇒ \(\begin{cases}x=-1\\y=2\end{cases}\)
Bài làm
\(xy^2+2xy+x=32y\)
\(\Leftrightarrow x\left(y^2+2y+1\right)=32y\)
\(\Leftrightarrow x=\frac{32y}{y^2+2y+1}\)
\(\Leftrightarrow\frac{32y}{\left(y+1\right)^2}\)
\(\Leftrightarrow x=\frac{32y}{y+1}-\frac{32y}{\left(y+1\right)^2}\)
Để x là số nguyên dương thì
\(\left(y+1\right)^2\inƯ_{\left(32\right)}\)và\(\left(y+1\right)^2\)là số chính phương
\(\Rightarrow\left(y+1^2\right)=\left\{1;4;16\right\}\)
\(\Leftrightarrow y+1=\left\{1;2;4\right\}\)
\(\Leftrightarrow y=\left\{0;1;3\right\}\)
Vì y là số nguyên dương
Nên: \(\hept{\begin{cases}y=1\Rightarrow x=8\\y=3\Rightarrow x=6\end{cases}}\)
Vậy x = 8; y = 1
hoặc x = 6; y = 3
# Chúc bạn học tốt #
Bạn có thể giải thích rõ dòng: 4 và 5 không. Mình thấy nó chưa được chính xác.
\(a,\hept{\begin{cases}\left(x-y\right)^2=1\\2x^2+2y^2-2xy-y=0\end{cases}}\)
Xét từng TH với x-y=1 và x-y=-1
\(b,\hept{\begin{cases}\left(x-1\right)\left(y+2\right)=0\\xy-3x+2y=0\end{cases}}\)
Xét từng TH x=1 và y=-2
Bài 1 :
a) \(x^3-x^2-x-2=0\)
\(\Leftrightarrow x^3-2x^2+x^2-2x+x-2=0\)
\(\Leftrightarrow\left(x^3-2x^2\right)+\left(x^2-2x\right)+\left(x-2\right)=0\)
\(\Leftrightarrow x^2\left(x-2\right)+x\left(x-2\right)+\left(x-2\right)=0\)
\(\Leftrightarrow\left(x-2\right)\left(x^2+x+1\right)=0\)(1)
Vì \(x^2+x+1=x^2+2.\frac{1}{2}.x+\frac{1}{4}+\frac{3}{4}=\left(x+\frac{1}{2}\right)^2+\frac{3}{4}\)
Vì \(\left(x+\frac{1}{2}\right)^2\ge0\forall x\)\(\Rightarrow\left(x+\frac{1}{2}\right)^2+\frac{3}{4}\ge\frac{3}{4}\forall x\)
\(\Rightarrow x^2+x+1\ge\frac{3}{4}\forall x\)(2)
Từ (1) và (2) \(\Rightarrow x-2=0\)\(\Leftrightarrow x=2\)
Vậy \(x=2\)
Bài 2:
\(2x^2+y^2-2xy+2y-6x+5=0\)
\(\Leftrightarrow x^2-2xy+y^2-2x+2y+1+x^2-4x+4=0\)
\(\Leftrightarrow\left(x^2-2xy+y^2\right)-\left(2x-2y\right)+1+\left(x^2-4x+4\right)=0\)
\(\Leftrightarrow\left(x-y\right)^2-2\left(x-y\right)+1+\left(x-2\right)^2=0\)
\(\Leftrightarrow\left(x-y-1\right)^2+\left(x-2\right)^2=0\)(1)
Vì \(\left(x-y-1\right)^2\ge0\forall x,y\); \(\left(x-2\right)^2\ge0\forall x\)
\(\Rightarrow\left(x-y-1\right)^2+\left(x-2\right)^2\ge0\forall x,y\)(2)
Từ (1) và (2) \(\Rightarrow\left(x-y-1\right)^2+\left(x-y\right)^2=0\)
\(\Leftrightarrow\hept{\begin{cases}x-y-1=0\\x-2=0\end{cases}}\Leftrightarrow\hept{\begin{cases}y=x-1\\x=2\end{cases}}\Leftrightarrow\hept{\begin{cases}y=1\\x=2\end{cases}}\)
Vậy \(x=2\)và \(y=1\)
\(y^2+2xy-3x-2=0.\)
\(\Leftrightarrow\left(x^2+2xy+y^2\right)-\left(x^2+3x+2\right)=0\)
\(\Leftrightarrow\left(x+y\right)^2=\left(x+1\right)\left(x+2\right)\)
Vì Vế trái là số chính phương nên vế phải cx là số chính phương!! nhưng trong trường hợp này VP ko thế nào là số chính phương đc!!
=> x+1=0 hoặc x+2=0
\(\Leftrightarrow\orbr{\begin{cases}x+1=0\\x+2=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=-1\Rightarrow y=1\\x=-2\Rightarrow y=2\end{cases}}}\)
Vậy...
Ta có \(y^2-2xy-3x-2=0\Leftrightarrow x^2+2xy+y^2=x^2+3x+2\) (*)
\(\Leftrightarrow\left(x+y\right)^2=\left(x+1\right)\left(x+2\right)\)
VT của (*) là số chính phương; VP của (*) là tách của 2 số nguyên liên tiếp nên phải có 1 số bằng 0
\(\Leftrightarrow\orbr{\begin{cases}x+1=0\\x-2=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=-1\Rightarrow y=1\\x=2\Rightarrow y=2\end{cases}}}\)
Vậy có 2 cặp số nguyên (x;y)=(-1;1);(-2;2)
\(\Leftrightarrow3x^2+x\left(2y^2-y-3\right)-\left(2y^2-y-3\right)=0\)
đặt \(\left(2y^2-y-3\right)=m\)với m là số tự nhiên nên phương trình trở thành
\(\Leftrightarrow3x^2+mx-m=0\)
có \(\Delta=m^2+12m=\left(m+6\right)^2-36=k^2\)vì x,y nguyên nên \(\Delta\)là số chính phương
\(\Leftrightarrow\left(m+6-k\right)\left(m+6+k\right)=36\)
m+6-k và m+6+k là ước của 36 ta xét các trường hợp có thể sảy ra (36,6);(18,2);(12,3);(9,4);(6,6).
5.\(\hept{\begin{cases}m+6+k=6\\m+6-k=6\end{cases}}\Leftrightarrow2m=0\Leftrightarrow m=0\)
\(2y^2-y-3=0\Leftrightarrow\orbr{\begin{cases}y=-1\\y=\frac{3}{2}\end{cases}}\)\(\Rightarrow y=-1\)
thay m=0 có \(\Delta=0\)phương trình ban đầu trở thành
\(3x^2=0\Leftrightarrow x=0\)
vậy cặp (x,y) nguyên là (0,-1)