Tìm hai số nguyên a, b biết
a > 0 và a . ( b - 2 ) = 3
GIÚP MIK NHA MIK TICK CHO
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có:3=3.1=1.3=-1.-3=-3.-1
Nhưng a > 0 nên 3=1.3=3.1
Do đó ta có bảng sau:
a | 1 | 3 |
b-2 | 3 | 1 |
b | 5 | 3 |
Vậy các cặp (a;b)là:(1;5)(3;1)
Bài 1:
a. Gọi d là ƯCLN(n+2, n+3). Khi đó:
$n+2\vdots d; n+3\vdots d$
$\Rightarrow (n+3)-(n+2)\vdots d$
Hay $1\vdots d$
$\Rightarrow d=1$. Vậy $ƯCLN(n+2, n+3)=1$ nên hai số này nguyên tố cùng nhau.
b.
Gọi $d=ƯCLN(2n+1, 9n+4)$
$\Rightarrow 2n+1\vdots d; 9n+4\vdots d$
$\Rightarrow 9(2n+1)-2(9n+4)\vdots d$
Hay $1\vdots d$
$\Rightarrow d=1$. Vậy $ƯCLN(2n+1, 9n+4)=1$ nên hai số này nguyên tố cùng nhau.
Bài 2:
a. Vì ƯCLN(a,b)=24 nên đặt $a=24x, b=24y$ với $x,y$ là 2 số nguyên tố cùng nhau.
Khi đó: $a+b=24x+24y=192$
$\Rightarrow 24(x+y)=192$
$\Rightarrow x+y=8$
Vì $(x,y)$ nguyên tố cùng nhau nên $(x,y)=(1,7), (3,5), (5,3), (1,7)$
$\Rightarrow (a,b)=(24,168), (72, 120), (120,72), (168,24)$
\(\frac{a-b}{b-2}\)=\(\frac{4}{b-2}\)=\(\frac{3}{2}\)
4x2=3xb-6
12-6=3x6
6=3xb
Vậy b=2 và a=4
1. 4x/6y=(2x+8)/(3y+11) <=> 12xy+44x=12xy+48y
<=> 44x=48y =>x/y=12/11
mình chỉ biết câu 1 thôi :v
a) \(\left(n+3\right)\left(n^2+1\right)=0\)
\(\Rightarrow n+3=0\Rightarrow n=-3\)(do \(n^2+1\ge1>0\))
b) \(\left(n-1\right)\left(n^2-4\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}n=1\\n^2=4\end{matrix}\right.\)\(\Rightarrow\left[{}\begin{matrix}n=1\\n=-2\\n=2\end{matrix}\right.\)
\(a,\Leftrightarrow\left[{}\begin{matrix}n+3=0\\n^2+1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}n=-3\left(tm\right)\\n^2=-1\left(ktm\right)\end{matrix}\right.\Leftrightarrow n=-3\\ b,\Leftrightarrow\left[{}\begin{matrix}n-1=0\\n^2-4=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}n=1\\n^2=4\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}n=1\\n=2\\n=-2\end{matrix}\right.\)
Ta có: a,b là 2 số nguyên khác nhau
\(\Rightarrow\left[{}\begin{matrix}a>b\\a< b\end{matrix}\right.\)\(\Rightarrow\left[{}\begin{matrix}a-b>0,b-a< 0\\a-b< 0,b-a>0\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}\left(a-b\right)\left(b-a\right)< 0\\\left(a-b\right)\left(b-a\right)< 0\end{matrix}\right.\)
Mà \(a,b\in Z\Leftrightarrow\left(a-b\right)\left(b-a\right)\in Z\)
Vậy \(m=\left(a-b\right)\left(b-a\right)\) luôn là số nguyên âm với mọi a,b là 2 số nguyên khác nhau
a = 1 ; 3
b = 5 ; 3
BN Bích Trâm ơi phải có cách giải chứ như thê mik cx bt lm