tìm nϵZ để phân thức \(\dfrac{2n^2+5n-1}{2n-1}\)là số nguyên CẦN GẤP MAI NỘP
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
B) n+5/n+3
Ta có:
(n+5) - (n+3) chia hết cho n+3
=>(n-n) + (5-3) chia hết cho n+3
=> 2 chia hết cho n+3
=> n+3 là Ư(2)={1 ; 2 ; -1 ; -2}
Ta có:
*)n+3= 1
n=1-3
n= -2
*)n+3=2
n= 2 - 3
n= -1
*)n+3= -1
n= -1-3
n= -4
*)n+3= -2
n= -2 - 3
n= -5
Để tớ gửi từ từ từng câu 1 nhé
Đặt \(d=ƯC\left(2n+1;2n^2+2n\right)\)
\(\Rightarrow\left\{{}\begin{matrix}2n+1⋮d\\2n^2+2n⋮d\end{matrix}\right.\)
\(\Rightarrow\left(2n+1\right)\left(2n+1\right)-2\left(2n^2+2n\right)⋮d\)
\(\Rightarrow1⋮d\)
\(\Rightarrow d=1\)
\(\Rightarrow2n+1\) và \(2n\left(n+1\right)\) nguyên tố cùng nhau hay phân số đã cho tối giản với mọi n nguyên
Để B là số nguyên thì \(5n+1⋮2n-1\)
\(\Leftrightarrow10n+2⋮2n-1\)
\(\Leftrightarrow2n-1\in\left\{1;-1;7;-7\right\}\)
hay \(n\in\left\{1;0;4;-3\right\}\)
\(A=\dfrac{2n^2+5n-1}{2n-1}=\dfrac{\left(2n-1\right)\left(n+3\right)+2}{2n-1}=n+3+\dfrac{2}{2n-1}\)
\(A\in Z\Leftrightarrow\dfrac{2}{2n-1}\in Z\Rightarrow2n-1=Ư\left(2\right)=\left\{-2;-1;1;2\right\}\)
\(\Rightarrow n=\left\{0;1\right\}\)
hay lắm bạn ơi, bạn đúng là cứu tinh của mình