Các bạn giải giúp mình nha:tìm min của A biết A=x*(x+1)*(x^2+x-4)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=|x+1|+|x+2|=|-x-1|+|x+2|\)
\(\Rightarrow A\ge|-x-1+x+2|\)
\(\Rightarrow A\ge1\)
\(A=1\Leftrightarrow\hept{\begin{cases}-x-1\ge0\\x+2\ge0\end{cases}}\)\(\Leftrightarrow\hept{\begin{cases}x\le-1\\x\ge-2\end{cases}}\)\(\Leftrightarrow-2\le x\le-1\)
Vậy \(minA=1\Leftrightarrow-2\le x\le-1.\)
Chắc chăn đúng nha bạn
~ học tốt nha ~
Ta có: \(D=\left(x-y\right)^2+2\left(x^2-y^2\right)+\left(x+y\right)^2\)
\(=\left(x-y+x+y\right)^2\)
\(=4x^2\)
A= x2+x-2-x+4
=x2+2
Vì x2 >=0 => x2+2>0
Vậy pj]ơng trình vô nghiệm.
a) x4+x3+2x2+x+1=(x4+x3+x2)+(x2+x+1)=x2(x2+x+1)+(x2+x+1)=(x2+x+1)(x2+1)
b)a3+b3+c3-3abc=a3+3ab(a+b)+b3+c3 -(3ab(a+b)+3abc)=(a+b)3+c3-3ab(a+b+c)
=(a+b+c)((a+b)2-(a+b)c+c2)-3ab(a+b+c)=(a+b+c)(a2+2ab+b2-ac-ab+c2-3ab)=(a+b+c)(a2+b2+c2-ab-ac-bc)
c)Đặt x-y=a;y-z=b;z-x=c
a+b+c=x-y-z+z-x=o
đưa về như bài b
d)nhóm 2 hạng tử đầu lại và 2hangj tử sau lại để 2 hạng tử sau ở trong ngoặc sau đó áp dụng hằng đẳng thức dề tính sau đó dặt nhân tử chung
e)x2(y-z)+y2(z-x)+z2(x-y)=x2(y-z)-y2((y-z)+(x-y))+z2(x-y)
=x2(y-z)-y2(y-z)-y2(x-y)+z2(x-y)=(y-z)(x2-y2)-(x-y)(y2-z2)=(y-z)(x2-2y2+xy+xz+yz)
\(\left|x-4\right|;\left|3x+2\right|\ge0\)
\(-2< 0\)
Suy ra không tồn tại giá trị của x.
\(x-4+x-1=5\)
\(2x=5+4+1\)
\(x=5\)