Tìm TXĐ của hàm số
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ĐKXĐ:
a. \(\left\{{}\begin{matrix}x-1\ge0\\x-3\ne0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x\ge1\\x\ne3\end{matrix}\right.\) \(\Rightarrow D=[1;+\infty)\backslash\left\{3\right\}\)
b. \(D=R\)
c. \(x+3>0\Rightarrow x>-3\Rightarrow D=\left(-3;+\infty\right)\)
d. \(\left|x-2\right|\ge0\Rightarrow x\in R\Rightarrow D=R\)
Hàm số xác định \(\Leftrightarrow\left\{{}\begin{matrix}sinx\ne0\\cos2x\ne0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}sinx\ne0\\tan^2x\ne1\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x\ne k\pi\\x\ne\dfrac{\pi}{4}+k\pi\\x\ne-\dfrac{\pi}{4}+k\pi\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x\ne k\pi\\x\ne\dfrac{\pi}{4}+\dfrac{k\pi}{2}\end{matrix}\right.\)
ĐKXĐ: \(\left\{{}\begin{matrix}cosx\ne0\\sinx+tanx\ne0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}cosx\ne0\\\dfrac{sinx\left(1+cosx\right)}{cosx}\ne0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}cosx\ne0\\sinx\ne0\end{matrix}\right.\)
\(\Leftrightarrow sin2x\ne0\)
\(\Rightarrow2x\ne k\pi\Rightarrow x\ne\dfrac{k\pi}{2}\)
\(Vì-1\le\cos2x\le1\)
\(\Rightarrow2\le3+\cos2x\le4\)
\(\Rightarrow\sqrt{2}\le\sqrt{3+\cos2x}\le\sqrt{4}\)
\(\Rightarrow\sqrt{2}\le\sqrt{3+\cos2x}\le2\)
\(\Rightarrow\sqrt{2}\le y\le2\)
\(Vậy\) \(y_{max}=2\)
\(y_{min}=\sqrt{2}\)
\(\sqrt{3}sinx+cosx\ne0\)
\(\Leftrightarrow\dfrac{\sqrt{3}}{2}sinx+\dfrac{1}{2}cosx\ne0\)
\(\Leftrightarrow sin\left(x+\dfrac{\pi}{6}\right)\ne0\)
\(\Leftrightarrow x+\dfrac{\pi}{6}\ne k\pi\)
\(\Leftrightarrow x\ne-\dfrac{\pi}{6}+k\pi\)
ĐKXĐ:
a. \(\left\{{}\begin{matrix}x-1\ge0\\x^2-x-2\ne0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x\ge1\\x\ne2\end{matrix}\right.\)
b. \(\left\{{}\begin{matrix}x-1\ne0\\x>0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x\ne1\\x>0\end{matrix}\right.\)
c. \(\left\{{}\begin{matrix}2-x\ge0\\x+4>0\end{matrix}\right.\) \(\Leftrightarrow-4< x\le2\)
d. \(\left\{{}\begin{matrix}x-1\ge0\\\sqrt{x-1}\ne2\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x\ge1\\x\ne5\end{matrix}\right.\)
e. \(\left\{{}\begin{matrix}3-x\ge0\\x^2-x\ne0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x\le3\\x\ne0\\x\ne1\end{matrix}\right.\)