K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

\(\left(x-y+2\right)^2+\left(y-2\right)^2+2\left(x-y\right)+2\left(y-2\right)\)

\(=x^2-2\cdot x\cdot\left(y-2\right)+\left(y-2\right)^2+\left(y-2\right)^2+2\left(x-y\right)+2\left(y-2\right)\)

\(=x^2-2x\left(y-2\right)+2\left(y-2\right)\left(y-2+2\right)+2\left(x-y\right)\)

\(=x^2-2x\left(y-2\right)+2y\left(y-2\right)+2\left(x-y\right)\)

\(=x^2-2\left(y-2\right)\left(x-y\right)+2\left(x-y\right)\)

\(=x^2-2\left(x-y\right)\left(y-2-2\right)\)

NM
8 tháng 11 2021

1. áp dụng tính chất của dãy tỉ số bằng nhau ta có : 

\(\frac{x+2}{3}=\frac{y-7}{5}=\frac{x+y-5}{3+5}=\frac{16}{8}=2\Rightarrow\hept{\begin{cases}x+2=6\\y-7=10\end{cases}\Leftrightarrow\hept{\begin{cases}x=4\\y=17\end{cases}}}\)

2. áp dụng tính chất của dãy tỉ số bằng nhau ta có : 

\(\frac{x+5}{2}=\frac{y-2}{3}=\frac{x+5-y+2}{2-3}=\frac{-10+7}{-1}=3\Rightarrow\hept{\begin{cases}x+5=6\\y-2=9\end{cases}}\Leftrightarrow\hept{\begin{cases}x=1\\y=11\end{cases}}\)

<=> y( 1+\(\frac{1}{5}\)) = -6

<=> y= -6.\(\frac{5}{6}\)

<=> y= -5

3 tháng 6 2021

y+y:5+30=96-12*6

y+y: 5+ 30= 96-72

y+y:5+30=24

y+y:5+30-24=0

y+y:5+6=0

y+y:5= 6

y+y= 6*5

y+y=30

Suy ra: y = 15

`@` `\text {Ans}`

`\downarrow`

\((x+y)(x-y)+(xy^4-x^3y^2) \div (xy^2) \)

`= x(x-y) + y(x-y) + xy^4 \div xy^2 - x^3y^2 \div xy^2`

`= x^2 - xy + xy - y^2 + y^2 - x^2`

`= (x^2 - x^2) + (-xy + xy) + (-y^2 + y^2)`

`= 0`

2 tháng 3 2020

\(x\left(2y+3\right)=y+1\)

\(\Rightarrow y+1\)chia hết cho \(2y+3\)

\(\Rightarrow2y+2\)chia hết cho \(2y+3\)

\(\Rightarrow2y+3-1\)chia hết cho \(2y+3\)

\(\Rightarrow-1\)chia hết cho \(2y+3\)( Vì \(2y+3\)chia hết cho \(2y+3\))

\(\Rightarrow2y+3\in\)ƯC \(\left(-1\right)\)

\(\Rightarrow2y+3\in\left\{1;-1\right\}\)

TH1 : 

\(2y+3=-1\)\(\Rightarrow y=-2\)\(\Rightarrow x=1\)

TH2 :
\(2y+3=1\)\(\Rightarrow y=-1\)\(\Rightarrow x=0\)

Vậy ( y ; x ) = ( - 2 ; 1 ) ; ( - 1 ; 0 )

5 tháng 7 2016

\(x+y+z+8=2\sqrt{x-1}+4\sqrt{y-2}+6\sqrt{z-3}\) (ĐKXĐ : \(x\ge1;y\ge2;z\ge3\))

\(\Leftrightarrow\left(x-1-2\sqrt{x-1}+1\right)+\left(y-2-4\sqrt{y-2}+4\right)+\left(z-3-6\sqrt{z-3}+9\right)=0\)

\(\Leftrightarrow\left(\sqrt{x-1}-1\right)^2+\left(\sqrt{y-2}-2\right)^2+\left(\sqrt{z-3}-3\right)^2=0\)

Vì \(\left(\sqrt{x-1}-1\right)^2\ge0;\left(\sqrt{y-2}-2\right)^2\ge0;\left(\sqrt{z-3}-3\right)^2\ge0\)

nên phương trình tương đương với : \(\hept{\begin{cases}\left(\sqrt{x-1}-1\right)^2=0\\\left(\sqrt{y-2}-2\right)^2=0\\\left(\sqrt{z-3}-3\right)^2=0\end{cases}\Leftrightarrow\hept{\begin{cases}x=2\\y=6\\z=12\end{cases}}}\)(TMĐK)

Vậy nghiệm của phương trình :  \(\left(x;y;z\right)=\left(2;6;12\right)\)