Nếu a^3 + 2ab - a^2 + 8b^3 - 4b^2 = 0 Và b # 0 ( # = khác) thì a= 1-2b
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a + 2b = 1 => 2b = 1 - a
Biến đổi VT:
\(a^3+8b^3+2ab-a^2-4b^2\)
\(=a\left(a^2+2b-a\right)+\left(2b\right)^3-\left(2b\right)^2\)
\(=a\left(a^2+1-a-a\right)+\left(2b\right)^2\left(2b-1\right)\)
\(=a\left(a^2-2a+1\right)+\left(1-a\right)^2\left(1-a-1\right)\)
\(=a\left(a-1\right)^2-a\left(1-a\right)^2\)
\(=a\left[\left(a-1\right)^2-\left(1-a\right)^2\right]\)
\(=a\left(a-1+1-a\right)\left(a-1-1+a\right)\)
\(=0\)(đpcm)
Câu 1:
\(Q=a^2+4b^2-10a\)
\(=a^2-10a+25+4b^2-25\)
\(=\left(a-5\right)^2+4b^2-25\)
\(\left(a-5\right)^2\ge0\)
\(4b^2\ge0\)
\(\Rightarrow\left(a-5\right)^2+4b^2-25\ge-25\)
Dấu ''='' xảy ra khi \(\left[\begin{array}{nghiempt}a-5=0\\b=0\end{array}\right.\)
\(\left[\begin{array}{nghiempt}a=5\\b=0\end{array}\right.\)
\(MinQ=-25\Leftrightarrow a=5;b=0\)
Câu 2:
Tam giác DAC vuông tại D có:
\(AC^2=CD^2+AD^2\)
\(=CD^2+CD^2\) (ABCD là hình vuông)
\(=2CD^2\)
\(=2\times\left(3\sqrt{2}\right)^2\)
\(=2\times9\times2\)
\(=36\)
\(AC=\sqrt{36}=6\left(cm\right)\)
Câu 3:
\(\frac{1}{a-1}=1\)
\(a-1=1\)
\(a=1+1\)
\(a=2\)
Thay a = 2 vào P, ta có:
\(P=\frac{2-2\times2\times b-b}{2\times2+3\times2\times b-b}\)
\(=\frac{2-4b-b}{4+6b-b}\)
\(=\frac{2-5b}{4+5b}\)
\(A=\frac{2ab}{4ab}+\frac{2ab}{a^2+4b^2}+\frac{1}{8ab}-\frac{1}{2}\)
áp dụng bđt AM-GM , a,b> 0
\(\Rightarrow A\ge2ab\left(\frac{4}{4ab+a^2+4b^2}\right)+\frac{1}{8ab}-\frac{1}{2}\)
\(\Rightarrow A\ge\frac{8ab}{1}+\frac{1}{8ab}-\frac{1}{2}\)
\(\Rightarrow A\ge2-\frac{1}{2}=\frac{3}{2}\)
Điệnthọi bé tý khi viết lời giải chẳng thẫy đề đâu. Vp (a+b)^3=bó tay
a) \(\sqrt{\dfrac{3+\sqrt{5}}{2x^2}}-\sqrt{\dfrac{3-\sqrt{5}}{2}}\)
= \(\sqrt{\dfrac{6+2\sqrt{5}}{4x^2}}-\sqrt{\dfrac{6-2\sqrt{5}}{4}}=\sqrt{\dfrac{5+2\sqrt{5}+1}{4x^2}}-\sqrt{\dfrac{5-2\sqrt{5}+1}{4}}\) = \(\sqrt{\dfrac{\left(\sqrt{5}+1\right)^2}{\left(2x\right)^2}}-\sqrt{\dfrac{\left(\sqrt{5}-1\right)^2}{2^2}}=\dfrac{\left|\sqrt{5}+1\right|}{\left|2x\right|}-\dfrac{\left|\sqrt{5}-1\right|}{2}=\dfrac{\sqrt{5}+1}{2x}-\dfrac{\sqrt{5}-1}{2}\)
Thay x = 1 vào biểu thức \(\dfrac{\sqrt{5}+1}{2x}-\dfrac{\sqrt{5}-1}{2}\) ta được :
\(\dfrac{\sqrt{5}+1}{2}-\dfrac{\sqrt{5}-1}{2}=\dfrac{\sqrt{5}+1-\sqrt{5}+1}{2}=1\)
Vậy tại x =1 thì giá trị của biểu thức \(\sqrt{\dfrac{3+\sqrt{5}}{2x^2}}-\sqrt{\dfrac{3-\sqrt{5}}{2}}\) là bằng 1
b) \(\dfrac{\sqrt{a^3+4a^2+4a}}{\sqrt{a\left(a^2-2ab+b^2\right)}}-\dfrac{\sqrt{b^3-4b^2+4b}}{\sqrt{b\left(a^2-2ab+b^2\right)}}+ab\)
= \(\sqrt{\dfrac{a\left(a^2+4a+4\right)}{a\left(a^2-2ab+b^2\right)}}-\sqrt{\dfrac{b\left(b^2-4b+4\right)}{b\left(a^2-2ab+b^2\right)}}+ab\)
= \(\dfrac{\sqrt{\left(a+2\right)^2}}{\sqrt{\left(a-b\right)^2}}-\dfrac{\sqrt{\left(b-2\right)^2}}{\sqrt{\left(a-b\right)^2}}+ab=\dfrac{a+2}{a-b}-\dfrac{b-2}{a-b}+ab\) = a - b + ab
Thay a = 4 và b = 3 vào biểu thức a - b +ab ta được :
4 - 3 + 4.3 = 13
Vậy tại a = 4 ; b = 3 thì giá trị của biểu thức \(\dfrac{\sqrt{a^3+4a^2+4a}}{\sqrt{a\left(a^2-2ab+b^2\right)}}-\dfrac{\sqrt{b^3-4b^2+4b}}{\sqrt{b\left(a^2-2ab+b^2\right)}}+ab\) là bằng 13
c) \(ab^2.\sqrt{\dfrac{4}{a^2b^4}}+ab=ab^2.\dfrac{2}{ab^2}+ab=2+ab\)
Thay a = 1 và b = -2 vào BT : 2 + ab ta được :
2 + 1.(-2) = 2 + (-2) = 0
Vậy tại a = 1 ; b = -2 thì giá trị của biểu thức \(ab^2.\sqrt{\dfrac{4}{a^2b^4}}+ab\) là bằng 0
d) \(\dfrac{a+b}{b^2}.\sqrt{\dfrac{a^2b^2}{a^2+2ab+b^2}}\) = \(\dfrac{a+b}{b^2}.\dfrac{\sqrt{a^2b^2}}{\sqrt{a^2+2ab+b^2}}=\dfrac{a+b}{b^2}.\dfrac{ab}{a+b}=\dfrac{ab}{b^2}\)
Thay a = 1 ; b =2 vào BT : \(\dfrac{ab}{b^2}\) ta được : \(\dfrac{1.2}{2^2}=\dfrac{1}{2}\)
Vậy tại a =1 ; b =2 GT của BT : \(\dfrac{a+b}{b^2}.\sqrt{\dfrac{a^2b^2}{a^2+2ab+b^2}}\) là \(\dfrac{1}{2}\)