Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Xét (O) có
ΔABC nội tiếp đường tròn(A,B,C∈(O))
AB là đường kính
Do đó: ΔABC vuông tại C(Định lí)
b) Áp dụng định lí Pytago vào ΔABC vuông tại C, ta được:
\(AB^2=BC^2+AC^2\)
\(\Leftrightarrow BC^2=AB^2-AC^2=\left(2\cdot R\right)^2-R^2=3\cdot R^2\)
hay \(BC=R\cdot\sqrt{3}\)(đvđd)
Xét ΔABC vuông tại C có
\(\sin\widehat{A}=\dfrac{BC}{AB}=\dfrac{R\sqrt{3}}{2R}=\dfrac{\sqrt{3}}{2}\)
hay \(\widehat{A}=60^0\)
Xét ΔABC vuông tại C có
\(\widehat{A}+\widehat{B}=90^0\)(hai góc nhọn phụ nhau)
hay \(\widehat{B}=30^0\)
Vậy: \(BC=R\cdot\sqrt{3}\)(đvđd); \(\widehat{A}=60^0\); \(\widehat{B}=30^0\)
a . Ta có : \(C\in\left(O\right),AB=2R\Rightarrow\widehat{ACB}=90^0\Rightarrow\Delta ABC\) vuông tại C
c . Vì \(OK\perp BC\Rightarrow B,C\) đối xứng qua OK
\(\Rightarrow\widehat{DCO}=\widehat{DBO}=90^0\Rightarrow DC\) là tiếp tuyến của (O)
d . Ta có \(AC=R\Rightarrow\Delta AOC\) đều
\(\Rightarrow\widehat{COM}=\widehat{MOB}=60^0\Rightarrow\Delta OCM,OMB\) đều
\(\Rightarrow OC=OM=OB=MB=MC\)=> ◊OBMC là hình thoi
e . Ta có :
\(\Delta ACO\) đều
\(\Rightarrow CH==\frac{R\sqrt{3}}{2}\Rightarrow CI=IH=\frac{R\sqrt{3}}{4}\)
\(\Rightarrow\frac{CI}{DB}=\frac{CI}{BC}=\frac{\frac{R\sqrt{3}}{4}}{R\sqrt{3}}=\frac{1}{4}=\frac{AH}{AB}=\frac{EI}{EB}\)
\(\Rightarrow\Delta ECI~\Delta EDB\left(c.g.c\right)\Rightarrow\widehat{CEI}=\widehat{DEB}\Rightarrow E,C,D\) thẳng hàng
a: Xét (O) có
ΔABC nội tiếp
BC là đường kính
Do đó: ΔABC vuông tại A
Ta có: ΔABC vuông tại A
=>\(AB^2+AC^2=BC^2\)
=>\(AC^2=\left(2R\right)^2-R^2=3R^2\)
=>\(AC=R\sqrt{3}\)
b: Ta có: ΔOAC cân tại O
mà OE là đường trung tuyến
nên OE là phân giác của góc AOC
=>OF là phân giác của góc AOC
Xét ΔOCF và ΔOAF có
OC=OA
\(\widehat{COF}=\widehat{AOF}\)
OF chung
Do đó: ΔOCF=ΔOAF
=>\(\widehat{OAF}=\widehat{OCF}=90^0\)
=>FA là tiếp tuyến của (O)