K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 12 2020

\(\left(2x+1\right)^2+\left(3x-1\right)^2+2\left(2x+1\right)\left(3x-1\right)\)

\(=\left(2x+1\right)^2+2\left(2x+1\right)\left(3x-1\right)+\left(3x-1\right)^2\)

\(=\left[\left(2x+1\right)+\left(3x-1\right)\right]^2=\left(2x+3x+1-1\right)^2=25x^2\)

13 tháng 12 2020

\(\left(2x+1\right)^2+\left(3x-1\right)^2+2\left(2x+1\right)\)\(\left(3x-1\right)\)

\(=\left(2x+1\right)^2+2\times\left(2x+1\right)\left(3x-1\right)\)\(+\left(3x-1\right)^2\)

\(=\left[\left(2x+1\right)+\left(3x-1\right)\right]^2\)

\(=\left(2x+1+3x-1\right)^2\)

\(=\left(5x\right)^2\)

\(=25x^2\)

Học tốt ~!

1: \(=6x^2+2x-15x-5-x^2+6x-9+4x^2+20x+25-27x^3-27x^2-9x-1\)

=-27x^3-18x^2+4x+10

2: =4x^2-1-6x^2-9x+4x+6-x^3+3x^2-3x+1+8x^3+36x^2+54x+27

=7x^3+37x^2+46x+33

5:

\(=25x^2-1-x^3-27-4x^2-16x-16-9x^2+24x-16+\left(2x-5\right)^3\)

\(=8x^3-60x^2+150-125+12x^2-x^3+8x-60\)

=7x^3-48x^2+8x-35

g: Ta có: \(3\left(2x-1\right)\left(3x-1\right)-\left(2x-3\right)\left(9x-1\right)=0\)

\(\Leftrightarrow3\left(6x^2-5x+1\right)-\left(18x^2-29x+3\right)=0\)

\(\Leftrightarrow18x^2-15x+3-18x^2+29x-3=0\)

\(\Leftrightarrow14x=0\)

hay x=0

12 tháng 8 2021

câu còn lại đâu bạn 

10 tháng 7 2021

Thế mày làm đi

 

10 tháng 7 2021

cho ít thôi thì làm

 

2 tháng 7 2021

1)  (2x + 1)(3x – 2) = (5x – 8)(2x + 1)

⇔ (2x + 1)(3x – 2) – (5x – 8)(2x + 1) = 0

⇔ (2x + 1).[(3x – 2) – (5x – 8)] = 0

⇔ (2x + 1).(3x – 2 – 5x + 8) = 0

⇔ (2x + 1)(6 – 2x) = 0

\(\left[{}\begin{matrix}2x+1=0\\6-2x=0\end{matrix}\right.\) ⇔ \(\left[{}\begin{matrix}x=\dfrac{-1}{2}\\x=3\end{matrix}\right.\)

Vậy.....

2)  4x2 -1 = (2x + 1)(3x - 5)

⇔ (2x-1)(2x+1)-(2x+1)(3x-5)=0

⇔ (2x+1)(2x-1-3x+5)=0

⇔ (2x+1)(4-x)=0

⇔ \(\left[{}\begin{matrix}2x+1=0\\4-x=0\end{matrix}\right.\) ⇔ \(\left[{}\begin{matrix}x=\dfrac{-1}{2}\\x=4\end{matrix}\right.\)

Vậy...

3)  

(x + 1)2 = 4(x2 – 2x + 1)

⇔ (x + 1)2 - 4(x2 – 2x + 1) = 0

⇔ x2 + 2x +1- 4x2 + 8x – 4 = 0

⇔ - 3x2 + 10x – 3 = 0

⇔ (- 3x2 + 9x) + (x – 3) = 0

⇔ -3x (x – 3)+ ( x- 3) = 0

⇔ ( x- 3) ( - 3x + 1) = 0

\(\left[{}\begin{matrix}x-3=0\\-3x+1=0\end{matrix}\right.\) ⇔\(\left[{}\begin{matrix}x=3\\x=\dfrac{1}{3}\end{matrix}\right.\)

Vậy......

2 tháng 7 2021

4) 2x3+5x2-3x=0

⇒2x3-x2+6x2-3x=0

⇒(2x3-x2)+(6x2-3x)=0

⇒x2(2x-1)+3x(2x-1)=0

⇒(x2+3x)(2x-1)=0

⇒ hoặc x2+3x=0⇒x(x+3)=0⇒hoặc x=0 hoặc x=-3

hoặc 2x-1=0⇒x=0,5

Vậy ...

5)2x=3x-2

⇒2x-3x=-2

⇒-x=-2

⇒x=2

6) x+15=3x-1

⇒x-3x=-1-15

⇒-2x=-16

⇒x=8

7)2-x=0,5x-4

⇒-x-0,5x=-4-2

⇒-1,5x=-6

⇒x=4

1 tháng 12 2021

dấu [] là giá trị tuyệt đối nha

 

31 tháng 10 2021
(3x-2)(2x-4)=1-12x²

a: Ta có: \(\left(x^2-2x+2\right)\left(x^2-2\right)\left(x^2+2x+2\right)\left(x^2+2\right)\)

\(=\left(x^4-4\right)\left[\left(x^2+2\right)^2-4x^2\right]\)

\(=\left(x^4-4\right)\left(x^4+4x^2+4-4x^2\right)\)

\(=\left(x^4-4\right)\cdot\left(x^4+4\right)\)

\(=x^8-16\)

b: Ta có: \(\left(x+1\right)^2-\left(x-1\right)^2+3x^2-3x\left(x+1\right)\left(x-1\right)\)

\(=x^2+2x+1-x^2+2x-1+3x^2-3x\left(x^2-1\right)\)

\(=3x^2+4x-3x^3+3x\)

\(=-3x^3+3x^2+7x\)

a) Ta có: \(x^2-3x+7=1+2x\)

\(\Leftrightarrow x^2-3x+7-1-2x=0\)

\(\Leftrightarrow x^2-3x-2x+6=0\)

\(\Leftrightarrow x\left(x-3\right)-2\left(x-3\right)=0\)

\(\Leftrightarrow\left(x-3\right)\left(x-2\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x-3=0\\x-2=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=3\\x=2\end{matrix}\right.\)

Vậy: S={3;2}

b) Ta có: \(x^2-3x-10=0\)

\(\Leftrightarrow x^2-5x+2x-10=0\)

\(\Leftrightarrow x\left(x-5\right)+2\left(x-5\right)=0\)

\(\Leftrightarrow\left(x-5\right)\left(x+2\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x-5=0\\x+2=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=5\\x=-2\end{matrix}\right.\)

Vậy: S={5;-2}

c) Ta có: \(x^2-3x+4=2\left(x-1\right)\)

\(\Leftrightarrow x^2-3x+4=2x-2\)

\(\Leftrightarrow x^2-3x+4-2x+2=0\)

\(\Leftrightarrow x^2-3x-2x+6=0\)

\(\Leftrightarrow x\left(x-3\right)-2\left(x-3\right)=0\)

\(\Leftrightarrow\left(x-3\right)\left(x-2\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x-3=0\\x-2=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=3\\x=2\end{matrix}\right.\)

Vậy: S={3;2}

d) Ta có: \(\left(x+1\right)\left(x-2\right)\left(x-5\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x+1=0\\x-2=0\\x-5=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-1\\x=2\\x=5\end{matrix}\right.\)

Vậy: S={-1;2;5}

e) Ta có: \(2x^2+3x+1=0\)

\(\Leftrightarrow2x^2+2x+x+1=0\)

\(\Leftrightarrow2x\left(x+1\right)+\left(x+1\right)=0\)

\(\Leftrightarrow\left(x+1\right)\left(2x+1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x+1=0\\2x+1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-1\\2x=-1\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-1\\x=\dfrac{-1}{2}\end{matrix}\right.\)

Vậy: \(S=\left\{-1;\dfrac{-1}{2}\right\}\)

f) Ta có: \(4x^2-3x=2x-1\)

\(\Leftrightarrow4x^2-3x-2x+1=0\)

\(\Leftrightarrow4x^2-5x+1=0\)

\(\Leftrightarrow4x^2-4x-x+1=0\)

\(\Leftrightarrow4x\left(x-1\right)-\left(x-1\right)=0\)

\(\Leftrightarrow\left(x-1\right)\left(4x-1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x-1=0\\4x-1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=1\\4x=1\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=1\\x=\dfrac{1}{4}\end{matrix}\right.\)

Vậy: \(S=\left\{1;\dfrac{1}{4}\right\}\)

3 tháng 2 2021

Ai giúp vs!