K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 11 2021

câu a, d đúng

26 tháng 11 2021

1,b,d

27 tháng 10 2021

a) Đ

b) S

c) S

d) Đ

e) Đ

g) Đ

24 tháng 10 2021

a: Trường hợp 1: x=3k

\(\Leftrightarrow A=\left(3k+3\right)\left(3k+7\right)\left(3k+11\right)⋮3\)

Trường hợp 2: x=3k+1

\(\Leftrightarrow A=\left(3k+4\right)\left(3k+8\right)\left(3k+12\right)⋮3\)

Trường hợp 3: x=3k+2

\(\Leftrightarrow A=\left(3k+5\right)\left(3k+9\right)\left(3k+13\right)⋮3\)

30 tháng 11 2021

e: \(\Leftrightarrow2n+1\in\left\{1;-1;5;-5\right\}\)

hay \(n\in\left\{0;-1;2;-3\right\}\)

26 tháng 11 2021

câu B

26 tháng 11 2021

đáp án B

22 tháng 6 2018

a, Có:\(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{a}{c}=\frac{b}{d}=\frac{a+b}{c+d}\)  (tính chất dãy tỉ số bằng nhau) (1)

\(\frac{a}{c}=\frac{b}{d}\Rightarrow\frac{ma}{mc}=\frac{nb}{nd}=\frac{ma+nb}{mc+nd}\) (tính chất dãy tỉ số bằng nhau) (2)

Từ (1),(2)=> \(\frac{a+b}{c+d}=\frac{ma+nb}{mc+nd}\Rightarrow\frac{a+b}{ma+nb}=\frac{c+d}{mc+nd}\)

b, tương tự a

16 tháng 8 2017

Theo đề bài ta có:
\(\dfrac{a}{b}\)=\(\dfrac{c}{d}\)=\(\dfrac{a}{c}\)=\(\dfrac{b}{d}\)=\(\dfrac{ac}{c^2}\)=\(\dfrac{bd}{d^2}\)=\(\dfrac{ac}{bd}\)=\(\dfrac{d^2}{c^2}\)=\(\dfrac{ac}{bd}\)=\(\dfrac{2d^2}{2c^2}\)
Áp dụng tính chất dãy tỉ số bằng nhau:
\(\dfrac{ac}{bd}\)=\(\dfrac{2d^2}{2c^2}\)= \(\dfrac{2c^2-ac}{2c^2-bd}\)
=> \(\dfrac{a}{b}\)=\(\dfrac{2c^2-ac}{2c^2-bd}\)=>\(\dfrac{a^2}{b^2}\)=\(\dfrac{2c^2-ac}{2d^2-bd}\)
b) Theo đề bài ta có:
\(\dfrac{a}{b}\)=\(\dfrac{c}{d}\)=\(\dfrac{a}{c}\)=\(\dfrac{b}{d}\)= \(\dfrac{ma}{mc}\)=\(\dfrac{nb}{nd}\)
Áp dụng tính chất dãy tỉ số bằng nhau:
\(\dfrac{ma}{mc}\)=\(\dfrac{nb}{nd}\)=\(\dfrac{ma+nb}{mc+nd}\)=\(\dfrac{ma-nb}{mc-nd}\)
=> \(\dfrac{ma+nb}{ma-nb}\)=\(\dfrac{mc+nd}{mc-nd}\)
c) Theo đề bài ta có:
\(\dfrac{a}{b}\)=\(\dfrac{c}{d}\)=\(\dfrac{a}{c}\)=\(\dfrac{b}{d}\)
Áp dụng tính chất dãy tỉ số bằng nhau:
\(\dfrac{a}{c}\)=\(\dfrac{b}{d}\)=\(\dfrac{a^3}{c^3}\)=\(\dfrac{b^3}{d^3}\)=\(\dfrac{a^3+b^3}{c^3+d^3}\)(1)
Áp dụng tính chất dãy tỉ số bằng nhau:
\(\dfrac{a}{c}\)=\(\dfrac{b}{d}\)=\(\dfrac{a-b}{c-d}\)=\(\left(\dfrac{a-b}{c-d}\right)^3\)(2)
Từ (1) và (2) suy ra:
\(\left(\dfrac{a-b}{c-d}\right)^3\)=\(\dfrac{a^3+b^3}{c^3+d^3}\)