Giải giúp mình bài 1,2,3 với
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
3:
b: x1^2+x2^2=12
=>(x1+x2)^2-2x1x2=12
=>(2m+2)^2-4m=12
=>4m^2+4m+4=12
=>m^2+m+1=3
=>(m+2)(m-1)=0
=>m=1;m=-2
2:
b: =>|x1|-|x2|=m+3-|-1|=m+2
=>x1^2+x2^2-2|x1x2|=m+2
=>(x1+x2)^2-2x1x2-2|x1x2|=m+2
=>(2m)^2-2(-1)-2|-1|=m+2
=>4m^2-m-2=0
=>m=(1+căn 33)/8; m=(1-căn 33)/8
1:
a: A=x^4+6x^3-3x^2-4x+8
bậc là 4
B=-x^4-6x^3+3x^2-2x+5
bậc là 4
b: A(x)+B(x)
=x^4+6x^3-3x^2-4x+8-x^4-6x^3+3x^2-2x+5
=-6x+13
A(x)-B(x)
=x^4+6x^3-3x^2-4x+8+x^4+6x^3-3x^2+2x-5
=2x^4+12x^3-6x^2-2x+3
3.
\(\Delta'=\left(m-1\right)^2-\left(-2m-1\right)=m^2+2>0;\forall m\)
\(\Rightarrow\) Pt luôn có 2 nghiệm pb với mọi m
Theo hệ thức Viet: \(\left\{{}\begin{matrix}x_1+x_2=2\left(m-1\right)\\x_1x_2=-2m-1\end{matrix}\right.\)
\(2x_1+3x_2+3x_1x_2=-11\)
\(\Leftrightarrow2\left(x_1+x_2\right)+x_2+3x_1x_2=-11\)
\(\Leftrightarrow4\left(m-1\right)+x_2+3\left(-2m-1\right)=-11\)
\(\Leftrightarrow x_2=2m-4\)
Thế vào \(x_1+x_2=2\left(m-1\right)\)
\(\Rightarrow x_1=2\left(m-1\right)-\left(2m-4\right)=2\)
Thế \(x_1=2;x_2=2m-4\) vào \(x_1x_2=-2m-1\)
\(\Rightarrow2\left(2m-4\right)=-2m-1\)
\(\Rightarrow m=\dfrac{7}{6}\)
4.
\(\Delta'=\left(m+1\right)^2-\left(m^2-m-5\right)=3m+6>0\Rightarrow m>-2\)
Theo hệ thức Viet: \(\left\{{}\begin{matrix}x_1+x_2=-2\left(m+1\right)\\x_1x_2=m^2-m-5\end{matrix}\right.\)
Do \(x_1\) là nghiệm của pt nên:
\(x_1^2+2\left(m+1\right)x_1+m^2-m-5=0\)
\(\Rightarrow x_1^2=-2\left(m+1\right)x_1-m^2+m+5\)
Từ đó ta được:
\(x_1^2-2\left(m+1\right)x_2+m^2-m-5=16\)
\(\Leftrightarrow-2\left(m+1\right)x_1-m^2+m-5-2\left(m+1\right)x_2+m^2-m-5=16\)
\(\Leftrightarrow-2\left(m+1\right)\left(x_1+x_2\right)=16\)
\(\Leftrightarrow4\left(m+1\right)^2=16\)
\(\Leftrightarrow\left(m+1\right)^2=4\)
\(\Rightarrow\left[{}\begin{matrix}m+1=2\\m+1=-2\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}m=1\\m=-3< -2\left(loại\right)\end{matrix}\right.\)