Tìm số tự nhiên có hai chữ số. Biết rằng tổng của hai chữ số đó là 10 và nếu đổi chỗ hai chữ số ấy thì được số mới lớn hơn số cũ là 36
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi chữ số hàng đơn vị của số đã cho là x (0 ≤ x ≤ 9 ; x ∈ N).
Khi đó, chữ số hàng chục là 10 – x
Chữ số đã cho có dạng : 10(10 – x) + x = 100 – 9x
Khi đổi chỗ, ta được số mới có dạng : 10x + 10 – x = 9x + 10
Theo bài ra ta có phương trình :
9x + 10 = (100 – 9x) + 36 ⇔ 18x = 126
⇔ x = 7 (thỏa mãn điều kiện)
Vậy số đã cho là 37.
Gọi chữ số hàng đơn vị của số đã cho là x (0 ≤ x ≤ 9 ; x ∈ N).
Khi đó, chữ số hàng chục là 10 – x
Chữ số đã cho có dạng : 10(10 – x) + x = 100 – 9x
Khi đổi chỗ, ta được số mới có dạng : 10x + 10 – x = 9x + 10
Theo bài ra ta có phương trình :
9x + 10 = (100 – 9x) + 36 ⇔ 18x = 126
⇔ x = 7 (thỏa mãn điều kiện)
Vậy số đã cho là 7
đáp án 73 cách giải gọi số tn đó là ab (đk:tự tìm)theo đề bài ta có hệ\(\hept{\begin{cases}a+b=10\\\overline{ba}-\overline{ab}=36\end{cases}}\) tự giải nha
Gọi số cần tìm là = 10a +b (a, b ∈ N; 0 < a < b < 10) .
Ta có a + b = 12 hay b = 12 - a
Khi đổi chỗ hai chữ số thì ta được số mới là = 10b + a
Số mới lớn hơn số cũ 36 đơn vị nên ta có phương trình 10a + b + 36 = 10b + a
Giải phương trình:
10a + b + 36 = 10b + a
⇔ 9a + 36 = 9b
⇔ a + 4 = b
⇔ a + 4 = 12 – a
⇔ 2a = 8
⇔ a = 4 ⇒ b = 8 (tmđk)
Vậy số cần tìm là 48.
Gọi chữ số hàng chục là x (x ≤ 9, x ∈ ℕ*)
12 - x là chữ số hàng đơn vị
Số ban đầu là: 10x + 12 - x = 9x + 12
Số lúc sau là: 10(12 - x) + x = 120 - 10x + x = 120 - 9x
Theo đề bài ta có phương trình:
120 - 9x - 36 = 9x + 12
⇔ -9x - 9x = 12 - 120 + 36
⇔ -18x = -72
⇔ x = 4 (nhận)
Chữ số hàng chục là 4
Chữ số hàng đơn vị là 12 - 4 = 8
Vậy số cần tìm là 48
Gọi số cần tìm là \(\overline{ab}\)(Điều kiện: \(\left\{{}\begin{matrix}a,b\in N\\0< a\le10\\0\le b\le10\end{matrix}\right.\))
Vì ba lần chữ số hàng chục lớn hơn chữ số hàng đơn vị là 6 đơn vị nên ta có phương trình: \(3a-b=6\)(1)
Vì khi viết hai chữ số ấy theo thứ tự ngược lại thì được một số mới lớn hơn số cũ là 36 đơn vị nên ta có phương trình: \(10b+a-\left(10a+b\right)=36\)
\(\Leftrightarrow10b+a-10a-b=36\)
\(\Leftrightarrow-9a+9b=36\)
\(\Leftrightarrow a-b=-4\)(2)
Từ (1) và (2) ta lập được hệ phương trình:
\(\left\{{}\begin{matrix}3a-b=6\\a-b=-4\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}2a=10\\a-b=-4\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}a=5\\b=a+4=5+4=9\end{matrix}\right.\)(thỏa ĐK)
Vậy: Số cần tìm là 59
Gọi số phải tìm là ab(0<a,b≤9)
ta có tổng hai chữ số là 12
=> a+b=12<=> a=12-b
lại có Nếu đổi chỗ hai chữ số thì ta được số mới lớn hơn số cũ là 36
ab - ba = 36<=> 9a-9b =36<=> a-b = 4<=> 12 - 2b=4<=> b=4=> a=8
=> số cần tìm là 84
Tham Khảo nhé
gọi số cần tìm là \(\overline{xy}\)
ta có hệ
\(\hept{\begin{cases}5x-y=12\\\left(10y+x\right)-\left(10x+y\right)=36\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}5x-y=12\\-9x+9y=36\end{cases}=>\hept{\begin{cases}45x-9y=108\\-45x+45y=180\end{cases}=>\hept{\begin{cases}36y=288\\5x-y=12\end{cases}=>\hept{\begin{cases}y=8\\5x=20\end{cases}}}}}\)
\(\Rightarrow\hept{\begin{cases}y=8\\x=4\end{cases}}\)
zậy số cần tìm là 48
37 .tớ nghĩ thế