Giao điểm của đồ thị hàm số y = 2 x + 1 2 x - 1 và đường thẳng y = x + 2 là:
A. (1;3) và (-3/2; 1/2) B. (1;3) và (0;2)
C. (0; -1) và (-3/2; 1/2) D. (0; -1) và (0;2)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
b: PTHĐGĐ là:
1/2x^2-x-4=0
=>x^2-2x-8=0
=>(x-4)(x+2)=0
=>x=4 hoặc x=-2
=>y=8 hoặc y=2
a:
Chọn D.
Xét phương trình hoành độ hoành độ giao điểm
Đặt phương trình (1) trở thành
Nên phương trình (1) có một nghiệm.
Vậy số giao điểm của đồ thị hàm số y = x 3 +x+2 và đường thẳng y = -2x + 1 là 1.
Lưu ý: Khi giải trắc nghiệm ta có thể giải phương trình (1) bằng cách bấm máy tinh, ta được 1 nghiệm như sau.
Vậy số giao điểm của đồ thị hàm số y = x 3 +x+2 và đường thẳng y = -2x + 1 là 1.
1/ Vẽ đồ thị hàm số : y = 3.|x| + x (1)
2/ Tìm tọa độ giao điểm đồ thị hàm số (1) với đường thẳng y=2
giao diem co hoanh do la 3x-1=x+3=>x=2
toa do giao diem la A(2,5)
5=(m-2).2+m+2
5=2m-4+m+2=3m-2
3m=7
m=7/3
Pt hoành độ giao điểm:
\(-x+1=x+3\Rightarrow2x=-2\)
\(\Rightarrow x=-1\Rightarrow y=x+3=2\)
\(\Rightarrow A\left(-1;2\right)\)
Để A thuộc \(y=\left(m-1\right)x+m^2-1\) thì:
\(-1.\left(m-1\right)+m^2-1=2\)
\(\Leftrightarrow m^2-m-2=0\Rightarrow\left[{}\begin{matrix}m=-1\left(loại\right)\\m=2\end{matrix}\right.\)
Do (d1) song song với đường thẳng y = 2x nên a = 2
(d1): y = 2x + b
Thay tọa độ điểm (1; -1) vào (d) ta được:
2.1 + b = -1
⇔ b = -1 - 2
⇔ b = -3
Vậy (d1): y = 2x - 3
b) x = 0 ⇒ y = -3
*) Đồ thị:
c) Phương trình hoành độ giao điểm của (d1) và (d2):
2x - 3 = 1/2 x + 1
⇔ 2x - 1/2 x = 1 + 3
⇔ 3/2 x = 4
⇔ x = 4 : 2/3
⇔ x = 8/3
⇒ y = 2.8/3 - 3 = 7/3
Vậy tọa độ giao điểm của (d1) và (d2) là (8/3; 7/3)
d) Ta có:
Gọi a là góc cần tính
⇒ tan(a) = 2
⇒ a ≈ 63⁰
(b) và (d) bạn tự xem kiến thức vẽ rồi áp dụng công thức tan là làm được nha=)
a)
Đồ thị hàm số (d1)// đường thẳng `y=2x`
=> \(\left\{{}\begin{matrix}a=a'\\b\ne b'\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=2\\b\ne0\end{matrix}\right.\)
=> `y=2x+b`
Do hàm số `y=2x+b` đi qua điểm `(1;-1)` nên `x=1`, `y=-1`:
`-1=2.1+b`
=> `b=-3`
Vậy hàm số `y=ax+b` là `y=2x-3`
c)
Ta có PTHĐGĐ giữa `d_1` và `d_2`:
\(2x-3=\dfrac{1}{2}x+1\\ \Rightarrow x=\dfrac{8}{3}\Rightarrow y=\dfrac{7}{3}\)
Vậy `E=`\(\left(\dfrac{8}{3};\dfrac{7}{3}\right)\)
$HaNa$
Tọa độ giao điểm là:
3x+1=-x+5 và y=-x+5
=>x=1 và y=4
Thay x=1 và y=4 vào y=ax+2, ta được:
a+2=4
=>a=2
\(b,\) PTHDGD: \(x+2=-\dfrac{1}{2}x+2\Leftrightarrow x=0\Leftrightarrow y=2\Leftrightarrow C\left(0;2\right)\Leftrightarrow OC=2\)
PT giao Ox của \(y=x+2:\) \(y=0\Leftrightarrow x=-2\Leftrightarrow A\left(-2;0\right)\Leftrightarrow OA=2\)
PT giao Ox của \(y=-\dfrac{1}{2}x+2:\) \(y=0\Leftrightarrow-\dfrac{1}{2}x=-2\Leftrightarrow x=4\Leftrightarrow B\left(4;0\right)\Leftrightarrow OB=4\)
Ta có: \(\left\{{}\begin{matrix}AB=OA+OB=6\\AC=\sqrt{\left(-2\right)^2+2^2}=2\sqrt{2}\\BC=\sqrt{4^2+2^2}=2\sqrt{5}\end{matrix}\right.\)
Do đó \(P_{ABC}=AB+BC+CA=6+2\sqrt{2}+2\sqrt{5}\)
\(S_{ABC}=\dfrac{1}{2}OC\cdot AB=\dfrac{1}{2}\cdot2\cdot6=6\left(đvdt\right)\)
Đáp án: A.
Gợi ý: Thử trực tiếp vào phương trình