Tìm x biết :
a x < 2 + 3 /4
b 1+2/3<x<4+5/6
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
`a, 1/2 +x=3/4`
`=> x= 3/4 -1/2`
`=> x= 3/4-2/4`
`=>x= 1/4`
`b, 5/2 -x=1/3`
`=> x= 5/2 -1/3`
`=> x= 15/6 - 2/6`
`=>x= 13/6`
`c, 2 . (1/3 +x)=1/5`
`=> 1/3 +x=1/5:2`
`=> 1/3 +x= 1/10`
`=>x= 1/10-1/3`
`=>x= 3/30 - 10/30`
`=>x=-7/30`
`d, 2/3 - (1/2 -x)=1/5`
`=> 1/2-x= 2/3 -1/5`
`=>1/2-x= 10/15 - 3/15`
`=>1/2-x=7/15`
`=>x= 1/2-7/15`
`=>x=1/30`
`1/2 + x = 3/4`
`=> x = 3/4 - 1/2`
`=> x = 1/4`
`5/2 - x = 1/3`
`=> x = 5/2 - 1/3`
`=> x = 13/6`
`2.(1/3 + x) = 1/5`
`=>1/3 + x = 1/10 `
`=> x = 1/10 - 1/3`
`=> x = -7/30`
`2/3 - (1/2 -x)= 1/5`
`=> 1/2 - x = 7/15`
`=> x = 1/2 - 7/15`
`=> x = 1/30`
a: =>-12<x<2y<-9
=>x=-11; y=-5
b: =>-7<3(x-1)<8
\(\Leftrightarrow3\left(x-1\right)\in\left\{-6;-3;0;3;6\right\}\)
\(\Leftrightarrow x-1\in\left\{2;1;0;-1;-2\right\}\)
hay \(x\in\left\{3;2;1;0;-1\right\}\)
lớp 6 gì kinh thế cái này lớp 8
M=a^3+b^3+ab
M=(a+b)[(a+b)^2-3ab)]+ab=1-2ab
a+b=1=> b=1-a
M=1-2a(1-a)=1+2a^2-2a
M=2.[(a^2-a+1/2)]+1
-=2(a-1/2)^2+1/2
GTLN của M=1/2 khi a=b=1/2
\(a,\Rightarrow\left|x\right|=4+1,16=5,16\Rightarrow\left[{}\begin{matrix}x=5,16\\x=-5,16\end{matrix}\right.\\ b,\Rightarrow\left(3x-2\right)^3=\left(-\dfrac{5}{2}\right)^3\\ \Rightarrow3x-2=-\dfrac{5}{2}\\ \Rightarrow3x=-\dfrac{5}{2}+2=-\dfrac{1}{2}\\ \Rightarrow x=-\dfrac{1}{2}:3=-\dfrac{1}{6}\)
a)lxl - 1,16=4
lxl=4+1,16
lxl=5,16
=>x thuộc ( 5,16 ; -5,16)
a) \(3a=2b\)\(\Rightarrow\)\(\frac{a}{2}=\frac{b}{3}\) hay \(\frac{a}{10}=\frac{b}{15}\)
\(4b=5c\)\(\Rightarrow\)\(\frac{b}{5}=\frac{c}{4}\) hay \(\frac{b}{15}=\frac{c}{12}\)
suy ra: \(\frac{a}{10}=\frac{b}{15}=\frac{c}{12}\)
đến đây bạn áp dụng tính chất dãy tỉ số bằng nhau nha
b) \(\left|x-1\right|+\left|y+\frac{2}{3}\right|+\left|x^2+xz\right|=0\)
Nhận thấy: \(\left|x-1\right|\ge0\) \(\left|y+\frac{2}{3}\right|\ge0;\) \(\left|x^2+xz\right|\ge0\)
suy ra: \(\left|x-1\right|+\left|y+\frac{2}{3}\right|+\left|x^2+xz\right|\ge0\)
Dấu "=" xảy ra \(\Leftrightarrow\)\(\hept{\begin{cases}x-1=0\\y+\frac{2}{3}=0\\x^2+xz=0\end{cases}}\)\(\Leftrightarrow\)\(\hept{\begin{cases}x=1\\y=-\frac{2}{3}\\z=-1\end{cases}}\)
Vậy....
\(\frac{2}{3}-\frac{1}{2}< x< \frac{2}{3}+\frac{1}{2}\)
\(\frac{4}{6}-\frac{3}{6}< x< \frac{4}{6}+\frac{3}{6}\)
\(\frac{1}{6}< x< \frac{7}{6}\)
Vì x là số tự nhiên
=> x = 1