K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: loading...

b: Phương trình hoành độ giao điểm là:

\(2x+7=-\dfrac{1}{2}x+2\)

=>\(2x+\dfrac{1}{2}x=2-7=-5\)

=>2,5x=-5

=>x=-2

Thay x=-2 vào y=2x+7, ta được:

\(y=2\cdot\left(-2\right)+7=7-4=3\)

Vậy: A(-2;3)

c: Tọa độ B là:

\(\left\{{}\begin{matrix}y=0\\2x+7=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=0\\2x=-7\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}y=0\\x=-3,5\end{matrix}\right.\)

Tọa độ C là:

\(\left\{{}\begin{matrix}y=0\\-\dfrac{1}{2}x+2=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=0\\-\dfrac{1}{2}x=-2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=0\\x=4\end{matrix}\right.\)

Vậy: C(4;0)

A(-2;3); B(-3,5;0); C(4;0)

\(AB=\sqrt{\left(-3,5+2\right)^2+\left(0-3\right)^2}=\dfrac{3\sqrt{5}}{2}\)

\(AC=\sqrt{\left(4+2\right)^2+\left(0-3\right)^2}=3\sqrt{5}\)

\(BC=\sqrt{\left(4+3,5\right)^2+\left(0-0\right)^2}=7,5\)

Vì \(AB^2+AC^2=BC^2\)

nên ΔABC vuông tại A

=>\(\widehat{BAC}=90^0\)

Xét ΔABC vuông tại A có \(sinABC=\dfrac{AC}{BC}=\dfrac{3\sqrt{5}}{7,5}\)

=>\(\widehat{ABC}\simeq63^0\)

ΔABC vuông tại A

=>\(\widehat{ABC}+\widehat{ACB}=90^0\)

=>\(\widehat{ACB}=90^0-63^0=27^0\)

d: Chu vi tam giác ABC là:

\(C_{ABC}=AB+AC+BC=\dfrac{3\sqrt{5}}{2}+3\sqrt{5}+7,5=\dfrac{9\sqrt{5}+15}{2}\)

Diện tích tam giác ABC là:

\(S_{ABC}=\dfrac{1}{2}\cdot AB\cdot AC=\dfrac{1}{2}\cdot\dfrac{3\sqrt{5}}{2}\cdot3\sqrt{5}=\dfrac{45}{4}\)

2 tháng 11 2021

b, PT giao điểm Ox và (d) là \(y=0\Leftrightarrow2x-3=0\Leftrightarrow x=\dfrac{3}{2}\Leftrightarrow A\left(\dfrac{3}{2};0\right)\Leftrightarrow OA=\dfrac{3}{2}\)

PT giao điểm Oy và (d) là \(x=0\Leftrightarrow y=-3\Leftrightarrow B\left(0;-3\right)\Leftrightarrow OB=3\)

Do đó \(S_{OAB}=\dfrac{1}{2}OA\cdot OB=\dfrac{1}{2}\cdot\dfrac{3}{2}\cdot3=\dfrac{9}{4}\left(đvdt\right)\)

Gọi OH là hình chiếu từ O đến (d)

Áp dụng HTL: \(\dfrac{1}{OH^2}=\dfrac{1}{OA^2}+\dfrac{1}{OB^2}=\dfrac{5}{9}\Leftrightarrow OH^2=\dfrac{9}{5}\Leftrightarrow OH=\dfrac{3\sqrt{5}}{5}\)

Vậy k/c từ O đến (d) là \(\dfrac{3\sqrt{5}}{5}\)

14 tháng 12 2023

a: loading...

b: Vì (d): y=-2x+4 có a=-2<0

nên \(\alpha\) là góc tù

c: Tọa độ A là:

\(\left\{{}\begin{matrix}y=0\\-2x+4=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=0\\-2x=-4\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}x=2\\y=0\end{matrix}\right.\)

Vậy: A(2;0)

Tọa độ B là:

\(\left\{{}\begin{matrix}x=0\\y=-2x+4=-2\cdot0+4=4\end{matrix}\right.\)

Vậy: B(0;4)

O(0;0): A(2;0); B(0;4)

\(OA=\sqrt{\left(2-0\right)^2+\left(0-0\right)^2}=\sqrt{2^2}=2\)

\(OB=\sqrt{\left(0-0\right)^2+\left(4-0\right)^2}=4\)

Vì OxOy nên OA⊥OB

=>ΔOAB vuông tại O

=>\(S_{OAB}=\dfrac{1}{2}\cdot OA\cdot OB=\dfrac{1}{2}\cdot2\cdot4=4\left(đvdt\right)\)

b) Phương trình hoành độ giao điểm là:

\(2x+6=-x+3\)

\(\Leftrightarrow2x+x=3-6\)

\(\Leftrightarrow3x=-3\)

hay x=-1

Thay x=-1 vào (d), ta được:

\(y=2\cdot\left(-1\right)+6=-2+6=4\)

Vậy: A(-1;4)

a: Tọa độ A là:

y=0 và -2x+2=0

=>x=1 và y=0

=>A(1;0)

Tọa độ B là:

x=0 và y=-2x+2

=>x=0 và y=-2*0+2=2

=>B(0;2)

b: C thuộc Ox nên C(x;0)

D thuộc Oy nên D(0;y)

ABCD là hình thoi nên AB=AD và vecto AB=vecto DC

A(1;0); B(0;2); C(x;0); D(0;y)

\(\overrightarrow{AB}=\left(-1;2\right);\overrightarrow{DC}=\left(x;-y\right)\)

\(AB=\sqrt{\left(0-1\right)^2+\left(2-0\right)^2}=\sqrt{5}\)

\(AD=\sqrt{\left(0-1\right)^2+\left(y-0\right)^2}=\sqrt{y^2+1}\)

vecto AB=vecto DC

=>x=-1 và -y=2

=>x=-1 và y=-2

AB=AD

=>y^2+1=5

=>y^2=4

=>y=2(loại) hoặc y=-2(nhận)

Vậy: x=-1 và y=-2

=>C(-1;0); D(0;-2)

Gọi phương trình (d2) có dạng là y=ax+b

(d2) đi qua C và D nên ta có hệ phương trình:

a*(-1)+b=0 và 0*a+b=-2

=>b=-2 và -a=-b=2

=>a=-2 và b=-2

=>y=-2x-2

c: (d1): y=-2x+2 và (d2): y=-2x-2

loading...