Cho hình chữ nhật ABCD. Trên BC lấy điểm M sao cho BM=2MC. AM cắt DC kéo dài tại N. Nối N với B, nối A với C, Nối D với M. Hãy:
- So sánh diện tích AMC và BMN
- So sánh diện tích AMD và ABM
- Cho AB = a, BC = b. Tính diện tích MCN
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
nua chu vi là: 60 : 2= 30 cm
tong so phan bang nhau cua CD va CR la: 3 + 2 = 5
CR: 30 : 5 x 2= 12 cm
CD 30: 5 X 3= 18 cm
a, DTHCN: 12 x 18 = .........
b. Ve hình sẽ thấy
hai tam giác có cùng chieu cao là CE
canh BM = 2 MC nên DT.MBE = 2 DT .MCD
nua chu vi la :60:2=30(cm)
tong so phan bang nhau la :3+2=5
chieu dai la 30:5*3=18(cm)
chieu rong la :18*\(\frac{2}{3}\)=12(cm)
SABCD la: 12*18=216(cm2)
b, vi MB=2MC nen MEB=2MCD
Bạn tham khảo nhé !
a) Nửa chu vi hay tổng chiều dài và chiều rộng của hình chữ nhật là:
60 : 2 = 30 (cm)
Chiều dài AB gấp rưỡi chiều rộng BC nghĩa là chiều dài bằng \(\frac{3}{2}\) chiều rộng
Chiều dài: |---|---|---|
Chiều rộng: |---|---|
Tổng số phần bằng nhau là:
3 + 2 = 5 (phần)
Chiều dài AB của hình chữ nhật có độ dài là:
30 : 5 × 3= 18 (cm)
Chiều rộng BC của hình chữ nhật là:
30−18 = 12 (cm)
Diện tích của hình chữ nhật ABCD là:
12 . 18 = 216 (cm2)
b) Ta có SEAB=SBCD
Vì:
- ΔEAB có chiều cao hạ từ E lên đáy AB bằng chiều cao BC của tam giác BCD hạ từ B lên đáy DC,
- đáy AB=DC
SABM=SDBM
Vì:
- chiều cao AB=DC
- chung đáy BM
Nên ta có: SEAB−SABM=SBCD−SDBM
Hay SMBE=SMCD
c) SABM =\(\frac{2}{3}\).SMAD
Vì:
- Đường cao AB bằng đường cao hạ từ đỉnh M của ΔMAD
- Đáy BM = \(\frac{2}{3}\)BC = \(\frac{2}{3}\)AD
Mà 2 tam giác này chung đáy AM nên suy ra chiều cao hạ từ đỉnh B lên AM của ΔMAB bằng \(\frac{2}{3}\) chiều cao hạ từ đỉnh D của ΔMAD lên đáy AM.
Đây cũng là chiều cao từ các đỉnh hạ lên đáy MO
ΔMBO và ΔMDO chung đáy MO
Chiều cao hạ từ B lên đáy MO của ΔMBO bằng \(\frac{2}{3}\)chiều cao hạ từ đỉnh DD lên đáy MO của ΔMDO
⇒\(\frac{SMBO}{SMOD}\) = \(\frac{2}{3}\)
ΔMBO và ΔMDO chung chiều cao hạ từ M lên BD
⇒\(\frac{OB}{OD}=\frac{2}{3}\)
k nha
đúng
a) Nửa chu vi hay tổng chiều dài và chiều rộng của hình chữ nhật là:
(cm)
Chiều dài AB gấp rưỡi chiều rộng BC nghĩa là chiều dài bằng chiều rộng
Chiều dài: |---|---|---|
Chiều rộng: |---|---|
Tổng số phần bằng nhau là:
(phần)
Chiều dài AB của hình chữ nhật có độ dài là:
(cm)
Chiều rộng BC của hình chữ nhật là:
(cm)
Diện tích của hình chữ nhật ABCD là:
b) Ta có
Vì:
- có chiều cao hạ từ E lên đáy AB bằng chiều cao BC của tam giác BCD hạ từ B lên đáy DC,
- đáy AB=DC
Vì:
- chiều cao AB=DC
- chung đáy BM
Nên ta có:
Hay
c)
Vì:
- Đường cao AB bằng đường cao hạ từ đỉnh M của
- Đáy BM==AD
Mà 2 tam giác này chung đáy AM nên suy ra chiều cao hạ từ đỉnh B lên AM của bằng chiều cao hạ từ đỉnh D của lên đáy AM.
Đây cũng là chiều cao từ các đỉnh hạ lên đáy MO
và chung đáy MO
Chiều cao hạ từ B lên đáy MO của bằng chiều cao hạ từ đỉnh lên đáy MO của .
và chung chiều cao hạ từ M lên BD
.
a ) Chiều dài hình chữ nhật ABCD là :
60 : 2 : ( 3 + 2 ) x 3 = 18 ( cm )
Chiều rộng hình chữ nhật ABCD là :
60 : 2 : ( 3 + 2 ) x 2 = 12 ( cm )
Diện tích hình chữ nhật ABCD là :
18 x 12 = 216 ( cm2 )
b ) Diện tích tam giác ABE là :
18 x 12 : 2 = 108 ( cm2 )
Diện tích tam giác ABM là :
18 x ( 12 : 3 x 2 ) : 2 = 72 ( cm2 )
Vậy diện tích tam giác MBE là :
108 - 72 = 36 ( cm2 )
Diện tích tam giác MCD là :
18 x ( 12 - 8 ) : 2 = 36 ( cm2 )
Vậy diện tích tam giác MBE bằng diện tích tam giác MCD .
c ) EC là đường cao ứng với cạnh đáy BM của tam giác BME .
Vậy EC bằng :
36 x 2 : 8 = 9 ( cm )
Diện tích tam giác ADE bằng :
12 x ( 18 + 9 ) : 2 = 162 ( cm2 )
Xét hai tam giác ABE và ADE có cùng cạnh đáy là AE .
Vậy tỉ số diện tích của hai tam giác ABE và ADE cũng chính là tỉ số hai đường cao vẽ từ đỉnh B và D là 108/162 = 2/3 .
Xét hai tam giác ABO và ADO có cùng đáy AO và tỉ số hai đường cao tương ứng là 2/3 .
Nên diện tích tam giác ABO / diện tích tam giác ADO = 2/3 .
Ta lại xét hai tam giác ABO và ADO có hai đáy BO và DO và cùng có một đường cao đường cao tương ứng vẽ từ A .
Vậy diện tích tam giác ABO / diện tích tam giác ADO = OB / OD ( vì có cùng đường cao vẽ từ A ) .
Vậy OB / OD = 2/3 .
2. TA CÓ:
SAMD = \(\frac{3}{2}\)SABM (do AD = \(\frac{2}{3}\)BM (AD = BC MÀ BM = \(\frac{2}{3}\)BC; đường cao bằng nhau và bằng chiều dài hình chữ nhật ABCD)
3. TA CÓ:
SMCN = \(\frac{1}{2}\)SBMN (do BM = 2MC; chung đường cao hạ từ N)
MẶT KHÁC SBMN = SMCD NÊN TA SUY RA SMCN = \(\frac{1}{2}\)SMCD
MÀ SMCN = CD \(\times\) MC = a \(\times\) \(\frac{1}{3}\)BC = a \(\times\) \(\frac{1}{3}\)b : 2 = \(\frac{1}{6}\)\(\times\) a \(\times\) b
VẬY SMCN = \(\frac{1}{6}\times a\times b\)