Cho đồ thị hàm số y = − x 3 + 3 m x + 1 có hai điểm cực trị A, B thỏa mãn tam giác OAB vuông tạo O (O là gốc tọa độ). Khẳng định nào dưới đây là đúng?
A. − 1 < m < 1 3
B. 1 < m < 3
C. − 1 2 < m < 1
D. − 2 < m < 0
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đáp án C
Có y ' = − 3 x 2 + 3 m . Hàm số có 2 cực trị khi m > 0 và khi đó 2 điểm cực trị là A − m ; − 2 m m + 1 ; B m ; 2 m m + 1 .
O A B là tam giác vuông ⇔ O A → . O B → = 0 ⇔ − m + 1 − 4 m 3 = 0 = ⇔ m = 1 2 ∈ − 1 2 ; 1
Chọn D
Ta có y ' = - 3 x 2 + 3 m
y ' = 0 ⇔ x 2 - m = 0 (*)
Đồ thị hàm số (1) có 2 điểm cực trị
⇔ P T ( * ) có 2 nghiệm phân biệt ⇔ m > 0 ( * * )
Khi đó 2 điểm cực trị
Tam giác OAB vuông tại O
V ậ y m = 1 2
a) Xét hàm số \(y=ax^4+bx^2+c\)
Ta có \(y'=4ax^3+2bx=2x\left(2ax^2+b\right)\)
\(y'=0\Leftrightarrow x=0\) hoặc \(2ax^2+b=0\left(1\right)\)
Đồ thị hàm số có 3 cực trị phân biệt khi và chỉ khi \(y'=0\) có 3 nghiệm phân biệt hay phương trình (1) có 2 nghiệm phân biệt khác 0 \(\Leftrightarrow ab< 0\) (*)
Với điều kiện (*) thì đồ thị có 3 điểm cực trị là :
\(A\left(0;c\right);B\left(-\sqrt{-\frac{b}{2a},}c-\frac{b^2}{4a}\right);C\left(\sqrt{-\frac{b}{2a},}c-\frac{b^2}{4a}\right)\)
Ta có \(AB=AC=\sqrt{\frac{b^2-8ab}{16a^2}};BC=\sqrt{-\frac{2b}{a}}\) nên tam giác ABC vuông khi và chỉ khi vuông tại A.
Khi đó \(BC^2=2AB^2\Leftrightarrow b^3+8a=0\)
Do đó yêu cầu bài toán\(\Leftrightarrow\begin{cases}ab< 0\\b^3+8a=0\end{cases}\)\(\Leftrightarrow\begin{cases}-2\left(m+1\right)< 0\\-8\left(m+1\right)^3+8=0\end{cases}\)\(\Leftrightarrow m=0\)
b) Ta có yêu cầu bài toán \(\Leftrightarrow\begin{cases}ab< 0\\OA=BC\end{cases}\)\(\Leftrightarrow\begin{cases}-2\left(m+1\right)< 0\\m^2-4\left(m+1\right)=0\end{cases}\)
\(\Leftrightarrow m=2\pm2\sqrt{2}\)
Chọn A
Ta có y ' = 3 x 2 - 6 m x + 3 ( m 2 - 1 ) .
Hàm số có hai cực trị => y' = 0 có hai nghiệm phân biệt <=> Δ' > 0 <=> ( 3 m ) 2 - 3 . 3 ( m 2 - 1 ) > 0 <=> 9 > 0 đúng với mọi m. Ta có điểm cực đại là B(m - 1; -2m + 2) và cực tiểu là C(m + 1; -2m - 2)
Đáp án C