chứng tỏ rằng 12n+1/30n+2 là phân số tối giản (n thuộc N)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Giả sử phân số \(\frac{12n+1}{30n+2}\) không tối giản
Đặt d là ƯCLN(12n+2;30n+2) nghĩa là nếu d=ƯCLN(12n+1;30n+2) thì d>1 (*)
Ta có:(12n+1) chia hết cho d;(30n+2) chia hết cho d
=>5.(12n+1)-2.(30n+2) chia hết cho d
=>60n+5-60n-4 chia hết cho d
=>1 chia hết cho d ,mâu thuẫn với (*)
do đó phân số \(\frac{12n+1}{30n+2}\) tối giản
Ta có: \(\frac{12n+1}{30n+2}\Rightarrow\frac{12+1}{30+2}=\frac{13}{32}\) mà \(\frac{13}{32}\) là phân số tối giản
Để 12n+1/30n+2 là phân số tối giản thì 12n+1 và 30n+2 phải có ƯCLN bằng 1
Gọi d là ƯCLN của 12n+1 và 30n+2
12n+1 chia hết cho d
30n+2 chia hết cho d
suy ra (30n+2 )-(12n+1) chia hết cho d
= 30n+2-12n-1 chia hết cho d
=(30n-12n) + (2-1)chia hết cho d
=8n+1
8n chia hết cho d , 1 chia hết cho d
suy ra n= 8n thì 12n+1/30n+2 la p/s tối giản
Bài tương tựGọi ước chung lớn nhất của 15n + 1 và 30n + 1 là d (d thuộc N*)
=> 15n + 1 chia hết cho d
30n + 1 chia hết cho d
=> 2(15n + 1) chia hết cho d
1(30n + 1) chia hết cho d
=> 30n + 2 chia hết cho d
30n + 1 chia hết cho d
=>(30n + 2) - (30n + 1) chia hết cho d
=> 1 chia hết cho d
Do d thuộc N*
=> d=1
=>Ước chung lớn nhất của 15n + 1 và 30n + 1 là 1
=> 15n +1 và 30n + 1 là 2 số nguyên tố cùng nhau
=>15n + 1/30n + 1 là phân số tối giản với n thuộc N (điều phải chứng minh)
Cho mình 5* pn nké.Hì.Thân.Chúc học giỏi
Đặt (12n+1,30n+20) = d Ta có:(12n+1) chia hết cho d và (30n+2) chia hết cho d suy ra 5(12n+1) chia hết cho d và 2(30n+2) chia hết cho d suy ra 60n+5 chia hết cho d và 60n+4 chia hết cho d suy ra 1 chia hết cho d suy ra d=1 (vì n thuộc N nên d thuộc n)Vậy 12n+1/30n+2 là phân số tối giản
ta co:(12n+1) chia het cho d va (30n+2)chia het cho d
suy ra, 5(12n+1)chia het cho d va 2(30n+2) chia het cho d
suy ra,60n+5 chia het cho d va 60n+4 chia het chod
suy ra, 1 chia het cho d suy ra d=1(vi n thuoc N nen d thuocn)
Vay 12n+1/30n+2 la phan so toi gian
Ta có 12n+1=60n+5(1)
30n+2=60n+4(2)
Lấy (1)-(2)=60n+5-60n-4=1
⇒⇒ƯCLN(12n+1,30n+2)=1
Vậy Chứng tỏ rằng 12n+1/30n+2 là phân số tối giản
Chứng tỏ rằng 12n+1/30n+2 là ps tối giản. ... Để chứng minh 12n+1/30n+2 là phân số tối giản thì cần chứng tỏ 12n+1 và 30n+2 nguyên tố cùng nhau. Gọi ƯCLN(12n+1,30n+2)=d (d∈N). => 12n+1 chia hết ... Ngô Hoài Nam , có 60n + 5 khi ta nhân 12n + 1 với 5 . ... 12 n +130 n +2 là PS tối giản (n thuộc N).
Giả sử cả 12n+1 và 30n+2 đều chia hết cho d
=> 12n+1 chia hết cho d và 30n+2 chia hết cho d
=> 5(12n+1) chia hết cho d và 2(30n+2) chia hết cho d
=> 60n+5 chia hết cho d và 60n+4 chia hết cho d
=> 60n+5-60n-4 chia hết cho d
<=> 1 chia hết cho d
=> d=1
Vậy \(\frac{12n+1}{30n+2}\)là tối giản với mọi n thuộc N
Giải:
*Để \(\frac{12n+1}{30n+2}\)là phân số tối giản thì 12n+1 và 30n+2 là hai số nguyên tố cùng nhau và ƯCLN (12n+ 1; 30n+ 2)=1
* Gọi d = ƯCLN (12n+1; 30n+2)
Ta có:
* 12n+1 chia hết cho d =>5.(12n+1) chia hết cho d
hay 60n+5 chia hết cho d
*30n+2 chia hết cho d =>2.( 30n+2) chia hết cho d
hay 60n +4 chia hết cho d
Do đó: (60n+ 5- 60n+4) chia hết cho d
hay 1 chia hết cho d
=> d =1
Vậy ƯCLN (12n+1; 30n+2)= 1
Vậy ƯCLN (12n+1; 30n+2)= 1
Do đó: \(\frac{12n+1}{30n+2}\text{là phân số tối giản}\)
Bài tương tựGọi ước chung lớn nhất của 15n + 1 và 30n + 1 là d (d thuộc N*)
=> 15n + 1 chia hết cho d
30n + 1 chia hết cho d
=> 2(15n + 1) chia hết cho d
1(30n + 1) chia hết cho d
=> 30n + 2 chia hết cho d
30n + 1 chia hết cho d
=>(30n + 2) - (30n + 1) chia hết cho d
=> 1 chia hết cho d
Do d thuộc N*
=> d=1
=>Ước chung lớn nhất của 15n + 1 và 30n + 1 là 1
=> 15n +1 và 30n + 1 là 2 số nguyên tố cùng nhau
=>15n + 1/30n + 1 là phân số tối giản với n thuộc N (điều phải chứng minh)
AI tích mk mk sẽ tích lại
Bài tương tựGọi ước chung lớn nhất của 15n + 1 và 30n + 1 là d (d thuộc N*)
=> 15n + 1 chia hết cho d
30n + 1 chia hết cho d
=> 2(15n + 1) chia hết cho d
1(30n + 1) chia hết cho d
=> 30n + 2 chia hết cho d
30n + 1 chia hết cho d
=>(30n + 2) - (30n + 1) chia hết cho d
=> 1 chia hết cho d
Do d thuộc N*
=> d=1
=>Ước chung lớn nhất của 15n + 1 và 30n + 1 là 1
=> 15n +1 và 30n + 1 là 2 số nguyên tố cùng nhau
=>15n + 1/30n + 1 là phân số tối giản với n thuộc N (điều phải chứng minh)
AI tích mk mk sẽ tích lại
Gọi d là UCLN của 12n +1/ 30n+2
=> 12n + 1 chia hết cho d; 30n + 2 chia hết cho d
=> 5.(12n + 1) chia hết cho d; 2.(30n + 2) chia hết cho d
=> 60n + 5 chia hết cho d; 60n + 4 chia hết cho d
=>(60n + 5) - (60n + 4) chia hết cho d
=> 1 chia hết cho d
=> d = 1
=> giả sử đầu bài đúng
=> phân số 12n+1/30n+2 là phân số tối giản (n thuộc N)
Gọi d là ƯC(12n + 1 ; 30n + 2)
\(\Rightarrow\hept{\begin{cases}12n+1⋮d\\30n+2⋮d\end{cases}\Rightarrow}\hept{\begin{cases}5\left(12n+1\right)⋮d\\2\left(30n+2\right)⋮d\end{cases}\Rightarrow}\hept{\begin{cases}60n+5⋮d\\60n+4⋮d\end{cases}}\)
=> 60n + 5 - 60n + 4 chia hết cho d
=> 1 chia hết cho d
=> d = 1
=> ƯCLN(12n + 1; 30n + 2) = 1
=> \(\frac{12n+1}{30n+2}\)tối giản ( đpcm )_
Ta có \(\frac{12n+1}{30n+2}\), gọi ƯCLN của 12n + 1 và 30n + 2 là d
Suy ra
( 12n + 1 ) . 5 = 60n + 5 chia hết cho d
( 30n + 2 ) . 2 = 60n + 4 chia hết cho d
Suy ra [ ( 60n + 5 ) - ( 60n + 4 ) ] chia hết cho d
Suy ra 1 chia hết cho d
Nên d = 1
Suy ra ( 12n + 1 ) và ( 30n + 2 ) Nguyên tố cùng nhau
Suy ra\(\frac{12n+1}{30n+2}\)là phân số tối giản
+Gọi d là ƯCLN(12n+1;30n+2)
+Ta có: (12n+1)<>d
(30n+2)<>d
> 5(12n+1)<>d
2(30n+2)<>D
> 60n+5<>d
60n+4<>d
> [(60n+5)-(60n+4)] <>d
> 1 <>d
> d thuộc {1}
Vậy 12n+1 trên 30+2 là phân số tối giản
mik moi hoc lop 5