K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 12 2017

Đáp án C

5 tháng 9 2018

Chọn B

Đặt  t = x 2 - 2 x  với x ∈ - 3 2 ; 7 2  

 

Bảng biến thiên của hàm số t = x 2 - 2 x  trên đoạn - 3 2 ; 7 2  là: 

Dựa vào bảng biến thiên t ∈ - 1 ;   21 4  

Khi đó phương trình    f ( x 2 - 2 x ) = m  (1) trở thành f(t)=m (2).

Ta thấy, với mỗi giá trị t ∈ ( - 1 ;   21 4 ]  ta tìm được hai giá trị của x ∈ - 3 2 ; 7 2  

Do đó, phương trình (1) có 4 nghiệm thực phân biệt thuộc - 3 2 ;   7 2  khi và chỉ khi phương trình (2) có hai nghiệm thực phân biệt thuộc  ( - 1 ;   21 3 ]    

 Đường thẳng y=m cắt đồ thị hàm số y=f(t) tại hai điểm phân biệt có hoành độ thuộc  - 1 ;   21 4

Dựa vào đồ thị ta thấy chỉ có hai giá trị nguyên của m thỏa yêu cầu là m=3  m=5

28 tháng 3 2017

10 tháng 4 2017

Chọn B

14 tháng 1 2018

Chọn D.

Để phương trình f(x)=m+2 có 4 nghiệm phân biệt thì đường thẳng y=m+2 phải cắt đồ thị hàm số y=f(x) tại 4 điểm phân biệt.

Dựa vào đồ thị ta được -4<m+2<-3 => -6<m<-5

5 tháng 8 2018

+ Trước tiên từ đồ thị hàm số y= f( x) , ta suy ra đồ thị hàm số y = |f(x)| như hình dưới đây: 

Phương trình 2|f(x)| - m = 0 hay  |f(x)| =  m/2 là phương trình hoành độ giao điểm của đồ thị hàm số y = |f(x) và đường thẳng y= m/2.

Dựa vào đồ thị hàm số  y = |f(x)|, ta có ycbt trở thành:

Chọn A.

15 tháng 4 2017

Đáp án B

12 tháng 9 2019

11 tháng 10 2018

Đáp án C.

- Lấy đối xứng phần đồ thị hàm số y = f(x) nằm phía dưới trục hoành lên phía trên trục hoành ta được đồ thị hàm số y = |f(x)| (như hình bên). - Số nghiệm của phương trình |f(x)| = m là số giao điểm của đồ thị hàm số y = |f(x)| với đường thẳng y = m. Phương trình |f(x)| = m có 6 nghiệm thực phân biệt  ⇔ 1 < m < 2.

24 tháng 7 2019

Đáp án C

Đồ thị của hàm số được vẽ theo 2 bước:

+ Tịnh tiến đồ thị của hàm số y=f(x) qua bên phải 1 đơn vị.

+ Giữ nguyên phần bên phải, lấy đối xứng phần bên phải qua trục Oy