Bài 1:Tìm xeZ biết:
x-4/y-3=4/3 và x-y=5
Cách giải nữa nha bạn
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{x}{5}=\frac{y}{3}\)và x2-y2=4(x,y>0)
\(\Rightarrow\frac{x}{5}=\frac{y}{3}=\frac{x^2}{5^2}=\frac{y^2}{3^2}=\frac{x^2-y^2}{25-9}=\frac{4}{16}=\frac{1}{4}\)
Áp dụng tính chất của dãy tỉ số bằng nhau , ta có :
\(\Rightarrow\frac{x^2}{25}=\frac{1}{4}\Rightarrow x^2=\frac{25}{4}\Rightarrow x=\frac{5}{2}\)
\(\Rightarrow\frac{y^2}{9}=\frac{1}{4}\Rightarrow y^2=\frac{9}{4}\Rightarrow y=\frac{3}{2}\)
Vậy x =\(\frac{5}{2}\)và y =\(\frac{3}{2}\)
Ta có:
\(\frac{x}{3}=\frac{y}{5}\Rightarrow\frac{x^2}{3}=\frac{y^2}{5}\)
Áp dụng dãy tỉ số bằng nhau, ta có:
\(\frac{x^2}{3^2}=\frac{y^2}{5^2}=\frac{x^2-y^2}{3^2-5^2}=\frac{-4}{-16}=\frac{1}{4}\)
\(\Rightarrow\frac{x^2}{3^2}=\frac{1}{4}\Rightarrow x=\sqrt{3^2.\frac{1}{4}}=\frac{3}{2}\)
\(\frac{y^2}{5^2}=\frac{1}{4}\Rightarrow y=\sqrt{5^2.\frac{1}{4}}=\frac{5}{2}\)
Bài 1:
Ta có:
\(y-x=25\Rightarrow y=25+x\)
Mà \(7x=4y\Rightarrow7x=4\cdot\left(25+x\right)\)
\(7x=100+4x\)
\(\Rightarrow7x-4x=100\)
\(3x=100\)
\(x=\frac{100}{3}\)
bài 1 :
Ta có: 7x=4y ⇔ x/4=y/7
áp dụng tính chất dãy tỉ số bằng nhau ta có
x/4=y/7=(y-x)/(7-4)=100/3
⇒x= 4 x 100/3=400/3 ; y = 7 x 100/3=700/3
bài 2
ta có x/5 = y/6 ⇔ x/20=y/24
y/8 = z/7 ⇔ y/24=z/21
⇒x/20=y/24=z/21
ADTCDTSBN(bài 1 có)
x/20=y/24=z/21=(x+y)/(20+24)=69/48=23/16
⇒x= 20 x 23/16 = 115/4
y= 24x 23/16=138/2
z=21x23/16=483/16
Ta có: x/2=y/3 =>x/8=y/12 (1)
y/4=z/5 =>y/12=z/15 (2)
Từ 1 và 2 => x/8=y/12=z/15
=> (x/8)2=(y/12)2=z/15
hay x2/64=y2/144=z/15
Áp dụng t/c của dãy tỉ số bằng nhau,có
x2/64=y2/144=z/15=(x2 - y2)/(64 - 144)= -16/-80=1/5
Khi đó: x2/64=1/5 => x2=1/5 . 64=64/5
=>x=\(\sqrt{\frac{64}{5}}\)
y2/144=1/5 => y2=144 . 1/5=144/5
=>y=\(\sqrt{\frac{144}{5}}\)
z/15 = 1/5 => z =15 . 1/5=3
mk lm sai thì thôi nha ^-^
\(\frac{x}{4}-\frac{1}{y}=\frac{3}{4}\)
\(\Rightarrow x.y=4.1=\frac{3}{4}\)
\(\Rightarrow x.y=4=\frac{3}{4}\)
\(\Rightarrow x.y=4\)
Mà :
4 = 2.2
4 = 1.4
4 = 4.1
Thay từng trường hợp đi bạn sẽ có kết quả
\(x^2+y^2+\frac{1}{x^2}+\frac{1}{y^2}=4\)
\(\Leftrightarrow x^2+y^2+\frac{1}{x^2}+\frac{1}{y^2}-4=0\)
\(\Leftrightarrow\left(x^2-2.x.\frac{1}{x}+\frac{1}{x^2}\right)+\left(y^2-2.y.\frac{1}{y}+\frac{1}{y^2}\right)=0\)
\(\Leftrightarrow\left(x-\frac{1}{x}\right)^2+\left(y-\frac{1}{y}\right)^2=0\)(1)
Ta thấy \(\left(x-\frac{1}{x}\right)^2\ge0;\left(y-\frac{1}{y}\right)^2\ge0\forall x;y\) nên \(\left(x-\frac{1}{x}\right)^2+\left(y-\frac{1}{y}\right)^2\ge0\forall x;y\)
Để (1) xảy ra \(\Leftrightarrow\hept{\begin{cases}\left(x-\frac{1}{x}\right)^2=0\\\left(y-\frac{1}{y}\right)^2=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=\frac{1}{x}\\y=\frac{1}{y}\end{cases}\Rightarrow\hept{\begin{cases}x=1\\y=1\end{cases}}}\)
Vậy \(x=y=1\)
\(\frac{x-4}{y-3}=\frac{4}{3}\Rightarrow3.\left(x-4\right)=4.\left(y-3\right)\Rightarrow3x-12=4y-12\Rightarrow3x=4y\)
ta có x-y=5=>x=y+5 =>3x=4y<=>3.(y+5)=4y<=>3y+15=4y<=>4y-3y=15<=>y=15
do đó y=15
thay y=15 vào x=y+5=>x=20
vậy x=20;y=15
x=20 y=15