Cho hàm số f x = x 2 + x − 6 x − 2 khi x > 2 − 2 a x + 1 khi x ≤ 2 . Xác định a để hàm số liên tục tại điểm x = 2
A. a = 1 2
B. a = - 1
C. a = 1
D. a = 2
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\lim\limits_{x\rightarrow2}f\left(x\right)=\lim\limits_{x\rightarrow2}\dfrac{x^2+x-6}{x-2}=\lim\limits_{x\rightarrow2}\dfrac{\left(x-2\right)\left(x+3\right)}{x-2}=\lim\limits_{x\rightarrow2}\left(x+3\right)=5\\ f\left(2\right)=5\\ \rightarrow\lim\limits_{x\rightarrow2}f\left(x\right)=f\left(2\right)\)
Suy ra f(x) liên tục tại x = 2.
Đáp án D
Ta có: f(2) = 4
lim x → 2 − f ( x ) = lim x → 2 − x 2 = 4
lim x → 2 + f ( x ) = lim x → 2 + − x 2 2 + b x − 6 = 2 b − 8
Vì hàm số có đạo hàm tại x= 2 nên hàm số liên tục tại x = 2
⇔ lim x → 2 − f ( x ) = lim x → 2 + f ( x ) ⇔ 4 = 2 b − 8 ⇔ b = 6
a: TXĐ: D=R
b: \(f\left(-1\right)=\dfrac{2}{-1-1}=\dfrac{2}{-2}=-1\)
\(f\left(0\right)=\sqrt{0+1}=1\)
\(f\left(1\right)=\sqrt{1+1}=\sqrt{2}\)
\(f\left(2\right)=\sqrt{3}\)
Ở góc trái khung soạn thảo có hỗ trợ viết công thức toán (biểu tượng $\sum$). Bạn viết lại đề bằng cách này để được hỗ trợ tốt hơn.
a, thay x=-2;x=6;x=-4 vào ta được:
f(-2)=-2*2=-4
f(6)=2*6=12
f(-4)=-4*2=-8
b,khi y=6 thì x=6/2=3
khi y=8 thì x=8/2=4
c,khi x=2 thì y=2*2=4
khĩ=5 thì y=2*5=10
Trên các khoảng \(\left( { - \infty ; - 2} \right)\) và \(\left( { - 2; + \infty } \right)\), \(f\left( x \right) = \frac{{{x^2} - 4}}{{x + 2}}\) là hàm phân thức hữu tỉ nên liên tục trên từng khoảng \(\left( { - \infty ; - 2} \right)\) và \(\left( { - 2; + \infty } \right)\).
Ta có: \(f\left( { - 2} \right) = a\)
\(\mathop {\lim }\limits_{x \to - 2} f\left( x \right) = \mathop {\lim }\limits_{x \to - 2} \frac{{{x^2} - 4}}{{x + 2}} = \mathop {\lim }\limits_{x \to - 2} \frac{{\left( {x - 2} \right)\left( {x + 2} \right)}}{{x + 2}} = \mathop {\lim }\limits_{x \to - 2} \left( {x - 2} \right) = - 2 - 2 = - 4\)
Để hàm số \(y = f\left( x \right)\) liên tục trên \(\mathbb{R}\) thì hàm số \(y = f\left( x \right)\) phải liên tục tại điểm \({x_0} = - 2\). Khi đó:
\(\mathop {\lim }\limits_{x \to - 2} f\left( x \right) = f\left( { - 2} \right) \Leftrightarrow a = - 4\).
Vậy với \(a = - 4\) thì hàm số \(y = f\left( x \right)\) liên tục trên \(\mathbb{R}\).
Đáp án B