Cho số phức z = 1+i. Số phức nghịch đảo của z là:
A. 1 - i 2
B. 1 - i
C. 1 - i 2
D. - 1 + i 2
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Chọn A. Số phức z là tổng của cấp số nhân với số hạng đầu là 1 và công bội q = 1 + i. Do đó:
Vậy phần thực là: 213
Chọn D.
Giả sử z = a+ bi thì khi và chỉ khi a = b - 4 (1)
Với a ≠ 0 hoặc b ≠ 1, ta có:
Vì là số thuần ảo nên a2 - ( b - 1) 2 = 0 khi và chỉ khi a = b - 1 hoặc a = 1 - b
Kết hợp (1) ta có a = -3/2 và b = 5/2.
Vậy số phức đó là
a/\(\left(1+i\right)z=\frac{1}{z}\Leftrightarrow z^2\left(1+i\right)=1\Rightarrow z^2=\frac{1}{1+i}=\frac{1}{2}-\frac{1}{2}i\)
\(\Rightarrow\) Phần ảo là \(-\frac{1}{2}\)
b/\(\frac{1}{z}=\frac{1}{2}+\frac{1}{2}i\Rightarrow z=\frac{2}{1+i}\Rightarrow z=1-i\)
Phần ảo là -1
c/ Áp dụng công thức tổng CSN với \(u_1=i\) ; \(q=i\); \(n=100\)
\(i+i^2+...+i^{100}=i.\frac{i^{101}-1}{i-1}=\frac{i^{102}-i}{i-1}=\frac{\left(i^2\right)^{51}-i}{i-1}=\frac{-1-i}{i-1}=i\)
d/ Tương tự câu trên:
\(1+\left(1+i\right)+...+\left(1+i\right)^{20}=1+\left(1+i\right).\frac{\left(1+i\right)^{21}-1}{1+i-1}=-2048+i\)
Đáp án C
Phương pháp giải: Ta có
Lời giải: Ta có