OLM ưu đãi đặc biệt gói SVIP 18 THÁNG dành cho nhà trường, đăng kí ngay!
Tham gia chương tình "Học kỳ rực rỡ" cùng OLM cơ hội nhận quà lên tới 2.000.000Đ
Cơ hội nhận 15 ngày VIP dành cho thầy cô nhân dịp đầu năm
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Giá trị nhỏ nhất, giá trị lớn nhất của hàm số y = x = ln(x) trên đoạn 1 2 ; e lần lượt là
A. 1 và e - 1
B. 1 và e
C. 1 2 + ln 2 và e - 1
D. 1 và 1 2 + ln 2
Đáp án A
Ta có: y ' = 1 − 1 x = 0 ⇔ x − 1 x = 0 ⇔ x = 1 . Ta có y 1 2 = 1 2 + ln 2 ; y 1 = 1 ; y e = e − 1
⇒ M a x y = e − 1 ; M i n y = 1
Tìm giá trị lớn nhất và nhỏ nhất của hàm số f(x) = 2x2- ln( 3-4x) trên đoạn [ -2; 0]
A. Max y=8; min y=1-ln4
B. max y=8-ln11; miny=1/8 -ln4
C. max y=8+ln11; min y=-ln4
D. max y=8+ln 4; min y=4+ln11
Chọn B
tìm giá trị lớn nhất giá trị nhỏ nhất của hàm số trên đoạn [2;4]
y=\(\dfrac{x^2+3}{x-1}\)
Giá trị nhỏ nhất của hàm số y = l n ( x 2 - 2 x + 1 ) - x trên đoạn [2;4] là:
A. 2ln2 - 3
B. 2ln2 - 4
C. - 2
D. - 3
Gọi M; N lần lượt là giá trị nhỏ nhất, lớn nhất của hàm số y = ln ( x + x 2 + 4 ) trên đoạn [0;5] Khi đó tổng M+N là
A.
B.
C. .
D. Kết quả khác
Chọn B
Tìm giá trị lớn nhất, giá trị nhỏ nhất của hàm số y = x 2 - 2 x + l n ( 2 x + 1 ) trên [0; 1]
A. m a x 0 ; 1 y = ln 3 + 1 ; m i n 0 ; 1 y = ln 2
B. m a x 0 ; 1 y = ln 3 - 1 ; m i n 0 ; 1 y = 0
C. m a x 0 ; 1 y = ln 3 - 1 ; m i n 0 ; 1 y = ln 2 - 3 4
D. m a x 0 ; 1 y = ln 2 + 3 4 ; m i n 0 ; 1 y = ln 3 - 1
Chọn C
Tìm giá trị lớn nhất và nhỏ nhất của các hàm số sau trên các khoảng, đoạn tương ứng: f(x) = x – ln x + 3 trên khoảng (0; ∞ )
min f(x) = f(1) = 4. Không có giá trị lớn nhất.
Tìm giá trị lớn nhất M và giá trị nhỏ nhất m của hàm số y = f(x) = x 2 − 4x + 3 trên đoạn [−2; 1].
A. M = 15; m = 1.
B. M = 15; m = 0.
C. M = 1; m = −2.
D. M = 0; m = −15.
Đáp án B
Giá trị nhỏ nhất của hàm số f ( x ) = l n ( x 2 + x + 1 ) trên đoạn [-2;0] bằng
A. ln3.
B. 0.
C. -2 ln2.
D. ln3-2 ln2.
Tìm giá trị lớn nhất của hàm số f(x)=x(2-ln x) trên đoạn [2;3].
C.
D.
Đáp án C
Đáp án A
Ta có: y ' = 1 − 1 x = 0 ⇔ x − 1 x = 0 ⇔ x = 1 . Ta có y 1 2 = 1 2 + ln 2 ; y 1 = 1 ; y e = e − 1
⇒ M a x y = e − 1 ; M i n y = 1