K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 5 2019

Đáp án A

y = m 3 x 3 − m x 2 + ( 2 m − 1 ) x − 2  txd  D = R

y ' = m x 2 − 2 m x + 2 m − 1

 

Để hàm số nghịch biến trên  R ⇔ y ' ≤ 0 ∀ x ∈ R

⇔ m = 0 m < 0 Δ ' = m 2 − 2 m 2 + m ≤ 0 ⇔ m = 0 m < 0 m ∈ ( − ∞ ; 0 ] ∪ [ 1 ; + ∞ ) ⇔ m ≤ 0

NV
8 tháng 7 2021

\(y'=-x^2-2\left(m-2\right)x+m-2\)

Hàm nghịch biến trên TXĐ khi và chỉ khi \(y'\le0;\forall x\)

\(\Leftrightarrow\left\{{}\begin{matrix}a=-1< 0\left(đúng\right)\\\Delta'=\left(m-2\right)^2+m-2\le0\end{matrix}\right.\)

\(\Leftrightarrow\left(m-2\right)\left(m-1\right)\le0\)

\(\Leftrightarrow1\le m\le2\)

23 tháng 5 2017

8 tháng 4 2018

Chọn B.

Tập xác định 

Có 

Hàm số nghịch bến trên mỗi khoảng của tập xác định

31 tháng 3 2018

Chọn D

8 tháng 1 2018

NV
22 tháng 6 2021

\(y=\dfrac{x^2-m^2+2m+1}{x-m}\) đúng không nhỉ?

\(y'=\dfrac{x^2-2mx+m^2-2m-1}{\left(x-m\right)^2}\)

Hàm đồng biến trên các khoảng xác định khi và chỉ khi:

\(x^2-2mx+m^2-2m-1\ge0\) ; \(\forall x\)

\(\Leftrightarrow\Delta'=m^2-\left(m^2-2m-1\right)\le0\)

\(\Leftrightarrow m\le-\dfrac{1}{2}\)

4 tháng 3 2019

Đáp án B

29 tháng 12 2017

NV
11 tháng 1

Hàm nghịch biến trên khoảng đã cho khi:

\(-\dfrac{b}{2a}=\left|m-1\right|\le2\)

\(\Rightarrow-2\le m-1\le2\)

\(\Rightarrow-1\le m\le3\)

11 tháng 1

Anh giúp em ạ!

https://hoc24.vn/cau-hoi/.8750829296330