Tung 1 con súc sắc cân đối và đồng chất hai lần liên tiếp. Xác suất để kết quả của hai lần tung là hai số tự nhiên liên tiếp bằng
A. 5/36
B. 5/18
C. 5/72
D. 5/6
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đáp án A
Phương pháp giải:
Tìm không gian mẫu khi gieo súc sắc và áp dụng quy tắc đếm tìm biến cố
Lời giải:
Tung 1 con súc sắc hai lần liên tiếp => Số phần tử của không gian mẫu là n ( Ω ) = 6 . 6 = 36
Gọi x, y lần lượt là số chấm xuất hiện khi tung con súc sắc trong 2 lần liên tiếp.
Theo bài ra, ta có
Do đó, số kết quả thuận lợi cho biến cố là n = 5.
Vậy P = n ( X ) n ( Ω ) = 5 36
Không gian mẫu: n Ω = 6 . 6 = 36
Gọi A là biến cố: ‘‘Tổng số chấm xuất hiện hai lần tung là một số nhỏ hơn 10’’.
⇒ A ¯ : ‘‘Tổng số chấm xuất hiện hai lần tung là một số không nhỏ hơn 10’’.
Tổng số chấm là một số không nhỏ hơn 10 nên số chấm xuất hiện là các cặp:
Chọn B.
Chọn D
Ta có số phần tử của không gian mẫu là n ( Ω ) = 36
Phương trình 1 2 x 2 + 6 x + m = 0 có hai nghiệm phân biệt khi và chỉ khi
Khi đó số chấm trên hai con con súc sắc là cặp số (i;j) với i,j = 1 , 6 ¯ thỏa mãn
Như thế, có tất cả 12 + 5 + 4 + 3 +2 = 26 cặp số (i;j) để i.j = m < 18
Vậy xác suất cần tìm bằng 26 36
Đáp án A
Phương trình có nghiệm
.
Do m là tổng số chấm sau 2 lần gieo súc sắc nên .
Do đó
Các trường hợp có tổng số chấm thỏa mãn yêu cầu bài toán là
.
Số trường hợp của không gian mẫu là .
Vậy xác suất cần tính là .
Đáp án A
Phương pháp giải:
Tìm không gian mẫu khi gieo súc sắc và áp dụng quy tắc đếm tìm biến cố
Lời giải:
Tung 1 con súc sắc hai lần liên tiếp => Số phần tử của không gian mẫu là
Gọi x, y lần lượt là số chấm xuất hiện khi tung con súc sắc trong 2 lần liên tiếp.
Theo bài ra, ta có
=>(x;y) = {(1;2), (2;3), (4;5). (5;6)}
Do đó, số kết quả thuận lợi cho biến cố là n = 5. Vậy