K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
24 tháng 11 2021

\(\lim\limits_{x\rightarrow\infty}\dfrac{3x+1}{x-1}=3\Rightarrow y=3\) là TCN của đồ thị hàm số

10 tháng 11 2017

17 tháng 8 2017

Đáp án D

1 tháng 1 2019

Đáp án A

17 tháng 1 2019

Đáp án D

Đồ thị hàm số  y = 1 2 x - 3  có hai đường tiệm cận đứng và một đường tiệm cận ngang

Đồ thị hàm số  y = x + x 2 + x + 1 x   có 1 tiệm cận đứng là x = 0 

Mặt khác  lim x → + ∞ y = x + x 2 + x + 1 x = lim x → + ∞ x + x + 1 x + 1 x 2 x = 0  nên đồ thị hàm số có 2 tiệm cận ngang

Xét hàm số  y = x - 2 x - 1 x 2 - 1 = x - 2 x - 1 x + 2 x - 1 x 2 - 1 = x - 1 x + 2 x - 1 x - 1 x > 1 2  suy ra đồ thị không có tiệm cận đứng. Do đó có 1 mệnh đề đúng

16 tháng 11 2018

31 tháng 1 2017

Đáp án A

Bằng cách áp dụng công thức tìm tiệm cận,

Lỗi sai

* Học sinh thường mắc sai lầm   lim x → + ∞ x + x 2 − 3 x + 1 = + ∞

Và kết luận hàm số không có tiệm cận ngang, nên sai lầm chọn đáp án B

NV
2 tháng 9 2021

\(\lim\limits_{x\rightarrow+\infty}\dfrac{\sqrt{x-1}}{x^2-3x+2}=\lim\limits_{x\rightarrow+\infty}\dfrac{\sqrt{\dfrac{1}{x^3}-\dfrac{1}{x^4}}}{1-\dfrac{3}{x}+\dfrac{2}{x^2}}=0\)

\(\Rightarrow y=0\) là tiệm cận ngang

\(\lim\limits_{x\rightarrow1^+}\dfrac{\sqrt{x-1}}{x^2-3x+2}=\lim\limits_{x\rightarrow1^+}\dfrac{1}{\sqrt{x-1}\left(x-2\right)}=\infty\)

\(\Rightarrow x=1\) là tiệm cận đứng

\(\lim\limits_{x\rightarrow2}\dfrac{\sqrt{x-1}}{x^2-3x+2}=\dfrac{1}{0}=\infty\)

\(\Rightarrow x=2\) là tiệm cận đứng

ĐTHS có 1 TCN và 2 TCĐ

14 tháng 3 2017

Chọn B.

Ta có 

suy ra đường thẳng y = 1 là tiệm cận ngang của đồ thị hàm số.

Do 

nên đường thẳng x = 1 là tiệm cận đứng của đồ thị hàm số. 

25 tháng 9 2017