K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 11 2021

=căn(căn x+9)^2 -3^2=24

= x+9-9=2x

=0=2x-x

X=0

NV
20 tháng 7 2021

a. Đề bài sai, phương trình không giải được

b.

ĐKXĐ: \(x\ge-\dfrac{2}{3}\)

\(\left(2x+10\right)\left(\dfrac{1-\left(3+2x\right)}{1+\sqrt{3+2x}}\right)^2=4\left(x+1\right)^2\)

\(\Leftrightarrow\dfrac{\left(2x+10\right)4.\left(x+1\right)^2}{\left(1+\sqrt{3+2x}\right)^2}=4\left(x+1\right)^2\)

\(\Leftrightarrow\left[{}\begin{matrix}4\left(x+1\right)^2=0\Rightarrow x=-1\\2x+10=\left(1+\sqrt{3+2x}\right)^2\left(1\right)\end{matrix}\right.\)

Xét (1)

\(\Leftrightarrow2x+10=2x+4+2\sqrt{2x+3}\)

\(\Leftrightarrow\sqrt{2x+3}=3\)

\(\Leftrightarrow x=3\)

20 tháng 7 2021

cho em hỏi , em thấy câu a có nghiệm mà

5 tháng 2 2021

đề câu 2 có sai gì ko v 

5 tháng 2 2021

ở VP "+4" nằm ở ngoài căn,đau bụng nên viết vội còn chạy ra WC :P

NV
2 tháng 3 2022

ĐKXĐ: \(2\le x\le5\)

\(\left(\sqrt{2x-4}-\sqrt{5-x}\right)\sqrt{3x-3}=3x-9\)

\(\Leftrightarrow\dfrac{\left(3x-9\right)\sqrt{3x-3}}{\sqrt{2x-4}+\sqrt{5-x}}=3x-9\)

\(\Leftrightarrow\left[{}\begin{matrix}3x-9=0\Rightarrow x=3\\\dfrac{\sqrt{3x-3}}{\sqrt{2x-4}+\sqrt{5-x}}=1\left(1\right)\end{matrix}\right.\)

Xét (1):

\(\Leftrightarrow\sqrt{3x-3}=\sqrt{2x-4}+\sqrt{5-x}\)

\(\Leftrightarrow3x-3=x+1+2\sqrt{\left(2x-4\right)\left(5-x\right)}\)

\(\Leftrightarrow x-2=\sqrt{\left(2x-4\right)\left(5-x\right)}\)

\(\Leftrightarrow\left\{{}\begin{matrix}x\ge2\\\left(x-2\right)^2=\left(2x-4\right)\left(5-x\right)\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x\ge2\\\left(x-2\right)\left(3x-12\right)=0\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x=2\\x=4\end{matrix}\right.\)

Vậy pt có 3 nghiệm \(x=\left\{2;3;4\right\}\)

31 tháng 7 2017

\(\hept{\begin{cases}x^2\left(y+3\right)\left(x-2\right)-\sqrt{2x+3}=0\left(1\right)\\4x-4\sqrt{\left(2x+3\right)}+x^3\sqrt{\left(y+3\right)^2}+9=0\left(2\right)\end{cases}}\)

Ta có:

\(\left(2\right)\Leftrightarrow x^2|y+3|=\frac{4\sqrt{2x+3}-4x-9}{x}\)

\(\Leftrightarrow\orbr{\begin{cases}x^2\left(y+3\right)=\frac{4\sqrt{2x+3}-4x-9}{x}\left(3\right)\\x^2\left(y+3\right)=-\frac{4\sqrt{2x+3}-4x-9}{x}\left(4\right)\end{cases}}\)

Thế (3) vô (1) được

\(\frac{4\sqrt{2x+3}-4x-9}{x}.\left(x-2\right)-\sqrt{2x+3}=0\)

Đặt \(\hept{\begin{cases}\sqrt{2x+3}=a\ge0\\x=\frac{a^2-3}{2}\end{cases}}\)

\(\Rightarrow\left(4a-2\left(a^2-3\right)-9\right)\left(\frac{a^2-3}{2}-2\right)-a\left(\frac{a^2-3}{2}\right)=0\)

Làm đến đây thì thấy nó phương trình bậc 4 thôi bỏ. Phương trình bậc 4 giải tốn công. Xem như 1 hướng đi.

31 tháng 7 2017

Xem lại đề là \(\left(x-2\right)\)hay \(\left(x+2\right)\)nhé. Nghiệm xấu quá.