Cho tứ diện đều ABCD có cạnh bằng a. M là một điểm bất kì bên trong tứ diện. Tổng khoảng cách từ M đến các mặt của khối tứ diện là
A. Một đại lượng phụ thuộc vị trí của M
B. a 2 3
C. a 2
D. a 3
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Chọn đáp án B
Gọi r1, r2, r3, r4 lần lượt là khoảng cách từ điểm M đến các mặt phẳng (BCD), (ACD), (ABD), (ABC)
Gọi S là diện tích một mặt của tứ diện đều thì
Thể tích tứ diện đều ABCD là V A B C D = a 3 2 12
Ta có V A B C D = V M . B C D + V M . A C D + V M . A B D + V M . A B C
Áp dụng bất đẳng thức Cauchy cho các số dương ta có:
Dấu “=” xảy ra khi và chỉ khi
Ta có tứ diện đều ABCD, M là một điểm trong của nó. Gọi V là thể tích, S là diện tích mỗi mặt của tứ diện đều ABCD, h A , h B , h C , h D lần lượt là khoảng cách từ M đến các mặt (BCD), (CDA), (DAB), (ABC).
Khi đó ta có:
V = V MBCD + V MCDA + V MDAB + V MABCV
= S( h A + h B + h C + h D )/3
Từ đó suy ra h A + h B + h C + h D = 3V/S
Đáp án A
Gọi H là hình chiếu của A xuống (ABCD), Ta có:
B H = a 3 3 ⇒ A H = a 2 − a 3 3 2 = a 6 3
Gọi S là diện tích 1 đáy và d là tổng khoảng cách từ I đến tất cả các mặt của tứ diện.
Ta có: V A B C D = 1 3 A H . S = 1 3 d . S ⇔ d = A H = a 6 3 .
Đáp án A
Nối chia khối tứ diện ABCD thành hai khối đa diện gồm PQD.NMB và khối đa diện chứa đỉnh A có thể tích A.
Dễ thấy P,Q lần lượt là trọng tâm của ∆BCE, ∆ABE
Gọi S là diện tích
Họi h là chiều cao của tứ diện ABCD
Khi đó
Suy ra
Chọn B.
Gọi x, y, z, t lần lượt là khoảng cách từ M đến các mặt phẳng (BCD), (CDA), (DAB), (ABC). Ta có
Cộng lại ta thu được (chú ý rằng)
với h là độ dài đường cao của tứ diện đều ABCD. Ta có