Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
c: \(=\dfrac{2\left(x+3\right)}{x\left(3x-1\right)}\cdot\dfrac{-\left(3x-1\right)}{x\left(x+3\right)}=\dfrac{-2}{x^2}\)
g: Ta có: \(3\left(2x-1\right)\left(3x-1\right)-\left(2x-3\right)\left(9x-1\right)=0\)
\(\Leftrightarrow3\left(6x^2-5x+1\right)-\left(18x^2-29x+3\right)=0\)
\(\Leftrightarrow18x^2-15x+3-18x^2+29x-3=0\)
\(\Leftrightarrow14x=0\)
hay x=0
* Trả lời:
\(\left(1\right)\) \(-3\left(1-2x\right)-4\left(1+3x\right)=-5x+5\)
\(\Leftrightarrow-3+6x-4-12x=-5x+5\)
\(\Leftrightarrow6x-12x+5x=3+4+5\)
\(\Leftrightarrow x=12\)
\(\left(2\right)\) \(3\left(2x-5\right)-6\left(1-4x\right)=-3x+7\)
\(\Leftrightarrow6x-15-6+24x=-3x+7\)
\(\Leftrightarrow6x+24x+3x=15+6+7\)
\(\Leftrightarrow33x=28\)
\(\Leftrightarrow x=\dfrac{28}{33}\)
\(\left(3\right)\) \(\left(1-3x\right)-2\left(3x-6\right)=-4x-5\)
\(\Leftrightarrow1-3x-6x+12=-4x-5\)
\(\Leftrightarrow-3x-6x+4x=-1-12-5\)
\(\Leftrightarrow-5x=-18\)
\(\Leftrightarrow x=\dfrac{18}{5}\)
\(\left(4\right)\) \(x\left(4x-3\right)-2x\left(2x-1\right)=5x-7\)
\(\Leftrightarrow4x^2-3x-4x^2+2x=5x-7\)
\(\Leftrightarrow-x-5x=-7\)
\(\Leftrightarrow-6x=-7\)
\(\Leftrightarrow x=\dfrac{7}{6}\)
\(\left(5\right)\) \(3x\left(2x-1\right)-6x\left(x+2\right)=-3x+4\)
\(\Leftrightarrow6x^2-3x-6x^2-12x=-3x+4\)
\(\Leftrightarrow-15x+3x=4\)
\(\Leftrightarrow-12x=4\)
\(\Leftrightarrow x=-\dfrac{1}{3}\)
\(1,\\ a,=3x^3-2x^2+5x\\ b,=2x^3y^2+\dfrac{2}{9}x^4y^2-\dfrac{1}{3}x^2y^3\\ c,=x^2-2x+6x-12=x^2+4x-12\\ 2,\\ a,\Rightarrow6x-9+4-2x=-3\\ \Rightarrow4x=2\Rightarrow x=\dfrac{1}{2}\\ b,\Rightarrow5x-2x^2+2x^2-2x=13\\ \Rightarrow3x=13\Rightarrow x=\dfrac{13}{3}\\ c,\Rightarrow5x^2-5x-5x^2+7x-10x+14=6\\ \Rightarrow-8x=-8\Rightarrow x=1\\ d,\Rightarrow6x^2+9x-6x^2+4x-15x+10=8\\ \Rightarrow-2x=-2\Rightarrow x=1\)
\(3,\\ A=2x^2+x-x^3-2x^2+x^3-x+3=3\\ B=6x^2-10x+33x-55-6x^2-14x-9x-21=-76\)
a) ĐKXĐ: \(-1\leq x\leq 2\)
\(\sqrt{(1+x)(2-x)}=1+2x-2x^2\)
\(\Leftrightarrow \sqrt{2+x-x^2}=1+2x-2x^2=-3+2(2+x-x^2)\)
Đặt \(\sqrt{2+x-x^2}=t(t\geq 0)\). PT trở thành:
\(t=-3+2t^2\)
\(\Leftrightarrow 2t^2-t-3=0\Leftrightarrow (2t-3)(t+1)=0\)
\(\Rightarrow t=\frac{3}{2}\) (do \(t\geq 0)\)
\(\Rightarrow 2+x-x^2=\frac{9}{4}\Rightarrow x^2-x+\frac{1}{4}=0\)
\(\Leftrightarrow (x-\frac{1}{2})^2=0\Rightarrow x=\frac{1}{2}\) (thỏa mãn)
b) ĐK: \(x\geq \frac{1}{3}\)
PT \(\Leftrightarrow \sqrt{(3x-1)+6\sqrt{3x-1}+9}+\sqrt{(3x-1)-6\sqrt{3x-1}+9}=3x+4\)
\(\Leftrightarrow \sqrt{(\sqrt{3x-1}+3)^2}+\sqrt{(\sqrt{3x-1}-3)^2}=3x+4\)
\(\Leftrightarrow \sqrt{3x-1}+3+|\sqrt{3x-1}-3|=3x+4\)
\(\Leftrightarrow |\sqrt{3x-1}-3|=3x-\sqrt{3x-1}+1\)
Nếu \(\sqrt{3x-1}\geq 3\):
\(\Rightarrow \sqrt{3x-1}-3=3x-\sqrt{3x-1}+1\)
\(\Leftrightarrow 3x+4-2\sqrt{3x-1}=0\)
\(\Leftrightarrow (3x-1)-2\sqrt{3x-1}+5=0\)
\(\Leftrightarrow (\sqrt{3x-1}-1)^2+4=0\) (vô lý)
Nếu \(\sqrt{3x-1}< 3\):
\(\Rightarrow 3-\sqrt{3x-1}=3x-\sqrt{3x-1}+1\)
\(\Leftrightarrow 3x=2\Rightarrow x=\frac{2}{3}\) (thỏa mãn)
Vậy...........
1/2x^3y(2x^4y^3-4xy-6)
=1/2x^3y*2x^4y^3-1/2x^3y*4xy-1/2x^3y*6
=x^7y^4-2x^4y^2-3x^3y
a: Ta có: \(3\left(2x-3\right)+2\left(2-x\right)=-3\)
\(\Leftrightarrow6x-9+4-2x=-3\)
\(\Leftrightarrow4x=2\)
hay \(x=\dfrac{1}{2}\)
a) \(2x\left(3x+1\right)+3x\left(4-2x\right)=7\)
\(\Rightarrow6x^2+2x+12x-6x^2=7\)
\(\Rightarrow14x=7\Rightarrow x=\frac{1}{2}\)
b) \(4\left(18-5x\right)-12\left(3x-7\right)=15\left(2x-16\right)-6\left(x+14\right)\)
\(72-20x-36x+84=30x-240-6x-84\)
\(\Rightarrow-20x-36x-30x+6x=-240-84-72-84\)
\(-80x=-480\)
x = 6
c) \(\left(3x+2\right).\left(2x+9\right)-\left(x+2\right).\left(6x+1\right)=\left(x+1\right)-\left(x-6\right)\)
\(\Rightarrow6x^2+4x+27x+18-6x^2-12x-x-2=x+1-x+6\) ( chỗ này bn tự phân tích ik nha, mk chỉ đưa ra kp sau khi phân tích thôi, ko thì viết ra dài lắm)
\(\Rightarrow18x+16=7\)
18x = -9
x = -2
18x =
\(\left|3x-6\right|=2x+1\)
\(\Leftrightarrow\hept{\begin{cases}2x+1\ge0\\\orbr{\begin{cases}3x-6=2x+1\\3x-6=-2x-1\end{cases}}\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x\ge\frac{-1}{2}\\\orbr{\begin{cases}x=7\left(tm\right)\\x=1\left(tm\right)\end{cases}}\end{cases}}\)