K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 10 2017

NV
5 tháng 12 2021

\(y'=\dfrac{3}{\left(x+2\right)^2}>0\Rightarrow\) hàm đồng biến trên đoạn đã cho

\(\Rightarrow\max\limits_{\left[0;1\right]}y=y\left(1\right)=0\)

NV
13 tháng 6 2021

\(y'=3x^2-6x-9=0\Rightarrow\left[{}\begin{matrix}x=-1\\x=3\end{matrix}\right.\)

a. Trên [-4;4] ta có: 

\(y\left(-4\right)=-41\) ; \(y\left(-1\right)=40\) ; \(y\left(3\right)=8\) ; \(y\left(4\right)=15\)

\(\Rightarrow y_{min}=-41\) ; \(y_{max}=40\)

b. Trên [0;5] ta có:

\(y\left(0\right)=35\) ; \(y\left(3\right)=8\)\(y\left(5\right)=40\)

\(\Rightarrow y_{max}=40\) ; \(y_{min}=8\)

20 tháng 8 2019

Đáp án D

Với x ∈ − 2 ; 1  ta có

y = − x 2 + 2 ⇒ y ' = − 2 x ; y ' = 0 ⇔ x = 0.

Ta có  y − 2 = − 2 ; y 0 = 2 ; y 1 = 1

Xét x ∈ 1 ; 3  ta có

y = x ⇒ y ' = 1 > 0.

Ta có y 3 = 3

Suy ra  max − 2 ; 3 y = 3

8 tháng 12 2018

19 tháng 1 2019

TXĐ: D = (-∞; 1) ∪ (1; +∞)

Giải bài 1 trang 23 sgk Giải tích 12 | Để học tốt Toán 12 > 0 với ∀ x ∈ D.

⇒ hàm số đồng biến trên (-∞; 1) và (1; +∞).

⇒ Hàm số đồng biến trên [2; 4] và [-3; -2]

Giải bài 1 trang 23 sgk Giải tích 12 | Để học tốt Toán 12

1 tháng 7 2018

13 tháng 8 2017

Đáp án B

7 tháng 4 2018

Ta có

 

Ta có:  f ( 0 ) = 1 ⇒ 1 = 3 C

Xét hàm  trên [-2;1]

Ta có

  

Nhận thấy f ' ( x ) > 0 ∀ x ∈ ℝ ⇒  Hàm số đồng biến trên (-2;1)

Suy ra  m a x - 2 ; 1   f ( x ) = f ( 1 ) = 16 3

Chọn đáp án C.