K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 4 2019

Đáp án  D

2

17 tháng 11 2018

24 tháng 8 2019

9 tháng 1 2018

11 tháng 7 2018

30 tháng 10 2017

9 tháng 9 2023

Xét hàm số \(f\left(x\right)=sinx+tanx-2x\left(0< x< \dfrac{\pi}{2}\right)\)

\(f'\left(x\right)=cosx+\dfrac{1}{cos^2x}-2\)

mà \(cosx>cos^2x\left(0< x< \dfrac{\pi}{2}\Rightarrow0< cosx< 1\right)\)

\(\Rightarrow f'\left(x\right)=cosx+\dfrac{1}{cos^2x}-2>cos^2x+\dfrac{1}{cos^2x}-2\)

mà \(cos^2x+\dfrac{1}{cos^2x}\ge2\sqrt[]{cos^2x.\dfrac{1}{cos^2x}}=2\left(Bđt.Cauchy\right)\)

\(\Rightarrow f'\left(x\right)>2-2=0\)

\(\Rightarrow f\left(x\right)\) đồng biến trên \(0< x< \dfrac{\pi}{2}\)

\(\Rightarrow f\left(x\right)>f\left(0\right)=0,\forall x\in\left(0;\dfrac{\pi}{2}\right)\)

\(\Rightarrow sinx+tanx-2x>0\)

\(\Rightarrow sinx+tanx>2x,\forall x\in\left(0;\dfrac{\pi}{2}\right)\)

\(\Rightarrow dpcm\)

16 tháng 8 2018

3 tháng 5 2018

10 tháng 7 2018