(5x-4)2-49x2=0
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a,x(x-2)+x-2=0
⇔ (x-2)(x+1)=0
⇔ x=2;x=-1
b,x3+x2+x+1=0
⇔ x2(x+1)+x+1=0
⇔ (x+1)(x2+1)=0
⇔ x=-1
a) (3x – 5)2 – (x +1 )2 = (3x – 5 – x – 1)(3x – 5 + x + 1)
= (2x – 6)(4x – 4) = 8(x – 1)(x – 3)
Vậy (x – 1)(x – 3) = 0 ⇒ x - 1 = 0 hoặc x - 3 = 0
⇒ x = 1hoặc x = 3
b)(5x – 4)2 – 49x2 = (5x – 4)2 – (7x)2 = (5x – 4 – 7x)(5x – 4 + 7x)
= (12x – 4)(-2x – 4) = -8(3x – 1)(x + 2)
Vậy (3x – 1)(x + 2) = 0 ⇒ 3x - 1 = 0 hoặc x + 2 = 0
⇒ x = 1/3 hoặc x = -2
(3x-5)2-(x+1)2=0
<=> (3x-5-x-1)2=0
=>3x-5-x-1=0
<=> 2x-6=0
<=>2x=6
=>x=3 Vậy x=3
b)(5x – 4)2 – 49x2 = (5x – 4)2 – (7x)2 = (5x – 4 – 7x)(5x – 4 + 7x)
= (12x – 4)(-2x – 4) = -8(3x – 1)(x + 2)
Vậy (3x – 1)(x + 2) = 0 ⇒ 3x - 1 = 0 hoặc x + 2 = 0
⇒ x = 1/3 hoặc x = -2
49x2 - 4 = 0
<=> (7x)2 - 22 = 0
<=> (7x - 2)(7x + 2) = 0
<=> \(\left[{}\begin{matrix}7x-2=0\\7x+2=0\end{matrix}\right.\)
<=> \(\left[{}\begin{matrix}x=\dfrac{2}{7}\\x=-\dfrac{2}{7}\end{matrix}\right.\)
a: 49x^2-25=0
=>(7x-5)(7x+5)=0
=>7x-5=0 hoặc 7x+5=0
=>x=5/7 hoặc x=-5/7
b: Đề thiếu vế phải rồi bạn
c: (3x-2)^2-9(x+4)(x-4)=2
=>9x^2-12x+4-9(x^2-16)=2
=>9x^2-12x+4-9x^2+144=2
=>-12x+148=2
=>-12x=-146
=>x=146/12=73/6
d: x^3-6x^2+12x-8=0
=>(x-2)^3=0
=>x-2=0
=>x=2
e: x^3-9x^2+27x-27=0
=>(x-3)^3=0
=>x-3=0
=>x=3
a) \(-25+49x^2=0\)
\(\Leftrightarrow49x^2-25=0\)
\(\Leftrightarrow\left(7x\right)^2-5^2=0\)
\(\Leftrightarrow\left(7x-5\right)\left(7x+5\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}7x-5=0\\7x+5=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}7x=5\\7x=-5\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{5}{7}\\x=-\dfrac{5}{7}\end{matrix}\right.\)
b) \(16x^2-25\left(x-2\right)^2=0\)
\(\Leftrightarrow\left(4x\right)^2-\left[5\left(x-2\right)\right]^2=0\)
\(\Leftrightarrow\left(4x-5x+10\right)\left(4x+5x-10\right)=0\)
\(\Leftrightarrow\left(10-x\right)\left(9x-10\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}10-x=0\\9x=10\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=10\\x=\dfrac{10}{9}\end{matrix}\right.\)
c) \(\left(3x-2\right)^2-9\left(x+4\right)\left(x+4\right)=2\)
\(\Leftrightarrow9x^2-12x+4-9\left(x^2+8x+16\right)=2\)
\(\Leftrightarrow9x^2-12x+4-9x^2-72x-144=2\)
\(\Leftrightarrow-84x-140=2\)
\(\Leftrightarrow-84x=142\)
\(\Leftrightarrow x=-\dfrac{142}{84}\)
\(\Leftrightarrow x=-\dfrac{71}{42}\)
d) \(x^3-6x^2+12x-8=0\)
\(\Leftrightarrow x^3-3\cdot2\cdot x^2+3\cdot2^2\cdot x-2^3=0\)
\(\Leftrightarrow\left(x-2\right)^3=0\)
\(\Leftrightarrow x-2=0\)
\(\Leftrightarrow x=2\)
e) \(-27+27x-9x^2+x^3=0\)
\(\Leftrightarrow x^3-9x^2+27x-27=0\)
\(\Leftrightarrow\left(x-3\right)^3=0\)
\(\Leftrightarrow x-3=0\)
\(\Leftrightarrow x=3\)
1)
`7x^2 -49x=0`
`<=>x(7x-49)=0`
\(< =>\left[{}\begin{matrix}x=0\\7x-49=0\end{matrix}\right.\\ < =>\left[{}\begin{matrix}x=0\\x=7\end{matrix}\right.\)
2)
`8x^2 -16x=0`
`<=>x(8x-16)=0`
\(< =>\left[{}\begin{matrix}x=0\\8x-16=0\end{matrix}\right.\\ < =>\left[{}\begin{matrix}x=0\\x=2\end{matrix}\right.\)
3)
`2x^3 +40x=0`
`<=>x(2x^2 +40)=0`
`<=>x=0` hoặc`2x^2 +40=0`
`<=>x=0` hoặc `2x^2 =-40` (vô lí vì `2x^2` luôn lớn hơn hoặc bằng 0)
`<=>x=0`
4)
`-x^3 +16x=0`
`<=>x^3 -16x=0`
`<=>x(x^2 -16)=0`
\(< =>\left[{}\begin{matrix}x=0\\x^2-16=0\end{matrix}\right.\\ < =>\left[{}\begin{matrix}x=0\\x^2=16\end{matrix}\right.\\ < =>\left[{}\begin{matrix}x=0\\x=4\\x=-4\end{matrix}\right.\)
`a)100x^2-20x+1`
`=(10x-1)^2`
Thay `x=1/10`
`=>100x^2-20x+1=(1-1)^2=0`
`b)49x^2-42x+10`
`=49*4/49-42*2/7+10`
`=4-12+10=2`
`c)25x^2+40x+16y^2`
`=(5x+4y)^2=(2+3)^2=25`
Thu gọn biểu thức:
\(9x\left(x+5\right)-\left(3x+2\right)\left(3x-2\right)\)
\(=9x^2+45x-\left(9x^2-4\right)\)
\(=45x+4\)
Tìm x. biết:
\(\left(3x-2\right)^2=49x^2\)
\(\Leftrightarrow\left[{}\begin{matrix}3x-2=7x\\3x-2=-7x\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x=-\dfrac{1}{2}\\x=\dfrac{1}{5}\end{matrix}\right.\)
Vậy \(x\in\left\{-\dfrac{1}{2};\dfrac{1}{5}\right\}\)
\(\Leftrightarrow\left(5x-4-7x\right)\left(5x-4+7x\right)=0\\ \Leftrightarrow\left(-2x-4\right)\left(12x-4\right)=0\\ \Leftrightarrow\left(x+2\right)\left(3x-1\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=-2\\x=\dfrac{1}{3}\end{matrix}\right.\)
⇔(5x-4-49x)(5x-4+49x)=0
⇔(-44x-4)(54x-4)=0
⇒-44x-4=0 hoặc 54x-4=0
TH1:-44x-4=0 TH2:54x-4=0
⇔x=-1/11 ⇔x=2/27
Vậy xϵ{-1/11;2/27}