Cho S.ABCDE là hình chóp đều, O là tâm đáy ABCDE khi đó khẳng định nào sau đây là sai
A. SO vuông góc với (ABCDE)
B. Đáy ABCDE là ngũ giác đều
C. Các cạnh bên bằng nhau
D. Các cạnh đáy bằng nhau và bằng cạnh bên
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1.
Đáp án C là đáp án đúng
Tất cả các cạnh bên của chóp đều bằng nhau, tất cả các cạnh đáy bằng nhau, nhưng tất cả các cạnh không chắc bằng nhau (cạnh bên có thể khác cạnh đáy)
2.
\(f'\left(x\right)=\dfrac{1}{2}cos^2x-\left(\dfrac{x-1}{2}\right)sin2x\)
\(f\left(x\right)-\left(x-1\right)f'\left(x\right)=0\Leftrightarrow\dfrac{x-1}{2}cos^2x-\dfrac{x-1}{2}cos^2x+\dfrac{\left(x-1\right)^2}{2}sin2x=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=1\\sin2x=0\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x=1\\x=0\\x=\dfrac{\pi}{2}\\x=\pi\end{matrix}\right.\) đáp án D
3. \(y'=\sqrt{x}+\dfrac{x}{2\sqrt{x}}=\dfrac{3}{2}\sqrt{x}\)
Do S.ABCD là chóp đều \(\Rightarrow BD\perp\left(SAC\right)\)
Mà BD là giao tuyến (MBD) và (ABCD)
\(\Rightarrow\widehat{MOC}\) là góc giữa (MBD) và (ABCD)
\(OC=\dfrac{AC}{2}=\dfrac{a\sqrt{2}}{2}\) ; \(MC=OM=\dfrac{1}{2}SC=\dfrac{a}{2}\)
Áp dụng định lý hàm cosin:
\(cos\widehat{MOC}=\dfrac{OM^2+OC^2-CM^2}{2OM.OC}=\dfrac{\sqrt{2}}{2}\)
\(\Rightarrow\widehat{MOC}=45^0\)
a) Theo giả thiết, S.ABCD là hình chóp đều và đáy ABCD là hình vuông nên SO ⊥ (ABCD) ( tính chất hình chóp đều)
Đáy ABCD là hình vuông cạnh a nên
=> Góc giữa hai mặt phẳng (MBD) và (ABCD) là 45 o
Dễ thấy AB=BC=CD=DE
và \(ABC\ge CDE=>AC\ge CE\)
Tam giác ACE có \(AC\ge CE=>AEC\ge CAE\left(1\right)\)
\(ABC\ge CDE=>\frac{180^0-B}{2}\le\frac{180^0-D}{2}=>BAC\le CED=>CED\ge BAC\left(2\right)\)
Cộng theo vế (1) và (2)
\(AEC+CED\ge CAE+BAC=>E\ge A,mà.E\le A=>E=A\)
Vậy \(A=B=C=D=E\),mà ngũ giác ABCDE có các cạnh = nhau nên là ngũ giác đều