Biểu thức log a b xác định khi và chỉ khi
A. a>0, b>0
B. 0<b#1, a>0
C. 0<a#1, b>0
D. a#1, b>0
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\dfrac{2x-1}{2x+1}\\ a,đkxđ:2x+1\ne0\Leftrightarrow2x\ne-1\Leftrightarrow x\ne-\dfrac{1}{2}\\ B,\)
Khi `x=0` thì Ta có :
\(\dfrac{2x-1}{2x+1}=\dfrac{2\cdot0-1}{2\cdot0+1}=\dfrac{0-1}{0+1}=-\dfrac{1}{1}=-1\)
A. Điều kiện xác định là:
\(2x+1\ne0\)
\(\Leftrightarrow2x\ne-1\)
\(\Leftrightarrow x\ne-\dfrac{1}{2}\)
B. Thay x = 0 biểu thức ta có:
\(\dfrac{2\cdot0-1}{2\cdot0+1}=\dfrac{-1}{1}=-1\)
a: |x-1|=3
=>x-1=3 hoặc x-1=-3
=>x=-2(nhận) hoặc x=4(loại)
Khi x=-2 thì \(A=\dfrac{4+4}{-2-4}=\dfrac{8}{-6}=\dfrac{-4}{3}\)
b: ĐKXĐ: x<>4; x<>-4
\(B=\dfrac{-\left(x+4\right)}{x-4}+\dfrac{x-4}{x+4}-\dfrac{4x^2}{\left(x-4\right)\left(x+4\right)}\)
\(=\dfrac{-x^2-8x-16+x^2-8x+16-4x^2}{\left(x-4\right)\left(x+4\right)}=\dfrac{-4x^2-16x}{\left(x-4\right)\left(x+4\right)}\)
=-4x/x-4
c: A+B
=-4x/x-4+x^2+4/x-4
=(x-2)^2/(x-4)
A+B>0
=>x-4>0
=>x>4
a) a và b là 2 số tự nhiên ⇒ a, b ≥ 0
nếu a>0, b>0 ⇒a+b>0
nếu a>0, b=0 ⇒a+b>0
nếu a=0, b>0 ⇒a+b>0
nếu a=0, b=0 ⇒a+b=0
⇒ a+b=0 khi và chỉ khi a = b = 0
b) a và b là 2 số tự nhiên ⇒ a, b ≥ 0
nếu a>0, b>0 ⇒ ab>0
nếu a=0, b>0 ⇒ ab=0
nếu a>0, b=0 ⇒ ab=0
Vậy ab = 0 khi và chỉ khi a = 0 hoặc b = 0
Ta có a → . b → = a → . b → . c o s a → , b → .
Mà theo giả thiết a → . b → = − a → . b →
Suy ra cos a → , b → = − 1 ⇒ a → , b → = 180 0 .
Chọn A.
a: ĐKXĐ: \(x\notin\left\{1;-1\right\}\)
b: \(A=\dfrac{\left(x-1\right)^2}{\left(x-1\right)\left(x+1\right)}=\dfrac{x-1}{x+1}\)
c: Thay x=-2 vào A, ta được:
\(A=\dfrac{-2-1}{-2+1}=\dfrac{-3}{-1}=3\)
a) Với \(x = 1\) thì \(y = {\log _2}1 = 0\)
Với \(x = 2\) thì \(y = {\log _2}2 = 1\)
Với \(x = 4\) thì \(y = {\log _2}4 = 2\)
b) Biểu thức \(y = {\log _2}x\) có nghĩa khi x > 0.
Chọn đáp án C.