Cho tứ diện đều ABCD có tất cả các cạnh bằng a. Khoảng cách giữa hai đường thẳng AB và CD là:
A. a 2 2
B. a 3 2
C. a 3 3
D. a
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Chọn đáp án A
Gọi G là trọng tâm tam giác BCD => AG ⊥ (BCD)
Gọi M là trung điểm CD => BM ⊥ CD
Kẻ MK ⊥ AB (K ∈ AB)
Mặt khác MK ⊥ CD vì CD ⊥ (SBM)
=> MK là đường vuông góc chung.
=> d(AB;CD) = MK
Khi đó M là trung điểm AB
Vậy khoảng cách giữa AB và CD bằng
Đáp án B
Cách giải:
Gọi M là trung điểm của CD. Kẻ AH vuông góc mặt phẳng (BCD) (H thuộc (BCD)) ⇒ H ∈ BM, AH ⊥ HM
VABCD lớn nhất khi và chỉ khi AH có độ dài lớn nhất, tức là khi H trùng M
Hai tam giác ACD, BCD đều, cạnh a, có đường cao AM, BM bằng a 3 2
Tam giác ABM vuông cân tại A, lấy N là trung điểm của AB ⇒ MN ⊥ AB
Mà MN ⊂ (AMB) ⊥ CD ⇒ MN ⊥ CD ⇒ MN là đoạn vuông góc chung của AB và CD
Khoảng cách giữa hai đường thẳng AB và CD là:
Đáp án C
Gọi M, N lần lượt là trung điểm của AB, CD
Ta có: Δ B C D = Δ A C D ⇔ B N = A N ⇒ Δ A B N cân
⇒ M N ⊥ A B
Tương tự, ta chứng minh được M N ⊥ C D ⇒ M N là đoạn vuông chung của AB và
CD.
Xét tam giác ABN có: A N = B N = a 3 2 ; A B = a
M N = A N 2 − A M 2 = A N 2 − A B 2 4 = a 3 2 2 − a 2 4 = a 2 2
Vậy khoảng cách giữa hai đường thẳng AB, CD là: a 2 2