Cho A=1+4+4^2+4^3+4^4+...+4^99.Chứng Minh Rằng A<B/3
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=3+3^2+3^3+...+3^{100}\)
\(\Leftrightarrow3A=3^2+3^3+3^4+3^5+....+3^{101}\)
\(\Leftrightarrow3A-A=\left(3^2+3^3+3^4+3^5+...+3^{101}\right)-\left(3+3^2+3^3+3^4+...+3^{100}\right)\)
\(\Leftrightarrow2A=3^{101}-3\)
\(\Leftrightarrow A=\frac{3^{101}-3}{2}< 3^{100}-1\)
\(\Leftrightarrow A< B\)
a. tính A = 3+3^2+3^3+3^4+.....+3^100
3A=3^2+3^3+3^4+3^5+....+3^100
3A-A=(3^2+3^3+3^4+....+3^101)-(3+3^2+3^3+3^4+.....+3^100)=3^101-3=3^100
mà B=3^100-1 => A<B
Lời giải:
$A=1+4+4^2+4^3+...+4^{99}$
$4A=4+4^2+4^3+4^4+....+4^{100}$
$\Rightarrow 4A-A=4^{100}-1$
$\Rightarrow 3A=4^{100}-1=B-1< B$
$\Rightarrow A< \frac{B}{3}$
A=1+4+42+43+.......+499 4A=4+42+43+44+.....+4100 4A-A=4+42+43+44+.....+4100 -1-4-42-43-.......-499 3A=4100-1 => A=(4100-1)/3 Vì 4100>4100-1 nên (4100-1)/3 < 4100/3 HAY A<B/3(ĐPCM)
Bài làm:
Ta có: \(A=1+4+4^2+4^3+...+4^{99}\)
\(\Rightarrow4A=4+4^2+4^3+4^4+...+4^{100}\)
\(\Rightarrow4A-A=\left(4+4^2+...+4^{100}\right)-\left(1+4+...+4^{99}\right)\)
\(\Leftrightarrow3A=4^{100}-1\)
\(\Rightarrow A=\frac{4^{100}-1}{3}=\frac{4^{100}}{3}-\frac{1}{3}< \frac{4^{100}}{3}=\frac{B}{3}\)
\(\Leftrightarrow A< \frac{B}{3}\)
A = 1 + 4 + 42 + 43 + ... + 499
4A = 4( 1 + 4 + 42 + 43 + ... + 499 )
= 4 + 42 + 43 + 44 + ... + 4100
4A - A = 3A
= ( 4 + 42 + 43 + 44 + ... + 4100 ) - ( 1 + 4 + 42 + 43 + ... + 499 )
= 4 + 42 + 43 + 44 + ... + 4100 - 1 - 4 - 42 - 43 - ... - 499
= 4100 - 1
3A = 4100 - 1 => A = \(\frac{4^{100}-1}{3}\)
\(\frac{B}{3}=\frac{4^{100}}{3}\)
\(4^{100}-1< 4^{100}\Rightarrow\frac{4^{100}-1}{3}< \frac{4^{100}}{3}\)
\(\Rightarrow A< \frac{B}{3}\left(đpcm\right)\)
ta có
\(4A=4+4^2+4^3+..+4^{99}+4^{100}=\left(1+4+4^2+..+4^{99}\right)+4^{100}-1\)
hay
\(4A=A+4^{100}-1\Leftrightarrow A=\frac{4^{100}-1}{3}< \frac{4^{100}}{3}=\frac{B}{3}\)
vậy ta có điều phải chứng minh
A=1+4+42+...+499
4A=4+42+43+...+4100
4A-A=3A=(4+42+...+4100)-(1+4+42+...+499)
3A=4100-1
Ta thấy: 3A<B =>A<B/3 (điều phải chứng minh)
nhớ tích đúng nhe!!
A=1+4+42+...+499
=>4A=4+42+43+...+4100
=>4A-A=(4+42+43+...+4100)-(1+4+42+...+499)=4100-1<4100
=>3A<4100
=>3A<B
=>A<B/3
\(4A=4+4^2+4^3+...+4^{100}\)
\(\Rightarrow3A=4A-A=4^{100}-1\Rightarrow A=\frac{4^{100}-1}{3}\)
Do đó \(\frac{A}{b}=\frac{\frac{4^{100}-1}{3}}{4^{101}}=\frac{4^{100}-1}{4^{101}.3}< \frac{4^{101}}{4^{101}.3}=\frac{1}{3}\)