K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 10 2018

28 tháng 8 2019

Đáp án A

Gọi G là trọng tâm tam giác đều ABC suy ra  G A ⊥ ( B C D )

Gọi M là trung điểm BD.

Đặt  A C = x ⇒ G C = 2 3 C M = x 3 3

lại có  A C 2 - G C 2 = A G 2

⇒ x = a 6 2

7 tháng 2 2017

Đáp án B

1 tháng 7 2018

18 tháng 3 2019

Đáp án A

Gọi H là hình chiếu của điểm A trên mặt phẳng(BCD). Do ABCD là tứ diện đều nên tâm H là tâm đường trong ngoại tiếp  Δ B C D .

Đặt cạnh của tứ diện là a. Gọi M  là trung điểm của CD.

Do Δ B C D  đều nên

B M = a 3 2 ⇒ B H = 2 3 B M = 2 3 . a 3 2 = a 3 3

Ta có   Δ A B H vuông tại H nên

A H = A B 2 − B H 2 = a 2 − a 3 3 2 = a 6 3

Từ giả thiết ta có

A H = a 6 3 = 6 ⇔ a = 3 6 ⇒ S Δ B C D = a 2 3 4 = 27 3 2

 (đvdt).

Vậy thể tích của tứ diện ABCD là

A H = a 6 3 = 6 ⇔ a = 3 6 ⇒ S Δ B C D = a 2 3 4 = 27 3 2

 (đvtt).

21 tháng 6 2017

Đáp án A

Gọi H là hình chiếu của điểm A trên mặt phẳng (BCD). Do ABCD là tứ diện đều nên tâm H là tâm đường trong ngoại tiếp ∆ BCD.

Đặt cạnh của tứ diện là a. Gọi M  là trung điểm của CD.

Do  ∆ BCD đều nên 

Ta có  ∆ ABH vuông tại H nên 

Từ giả thiết ta có 

Vậy thể tích của tứ diện ABCD là

24 tháng 5 2019

Gọi hình chiếu vuông góc hạ từ A đến mặt phẳng (BCD) là H. Khoảng cách từ A đến mặt phẳng (BCD) là AH.

Vì tứ diện đều nên H là trọng tâm tam giác BCD

6 tháng 9 2017

Chọn B.

Gọi hình chiếu vuông góc hạ từ A đến mặt phẳng (BCD) là H. Khoảng cách từ A đến mặt phẳng (BCD) là AH.

Vì tứ diện đều nên H là trọng tâm tam giác BCD

⇒ B H = 2 3 . 3 a 2 = a 3 3

Trong tam giác  ABH

A H = A B 2 - B H 2 = a 2 - a 2 3 = a 6 3

7 tháng 7 2018

Đáp án C

Khoảng cách từ B bằng với chiều cao của tứ diện đều ABCD. Do đó ta dễ dàng suy ra được: 

=> Chọn phương án C.

19 tháng 6 2019

Đáp án C

Khoảng cách từ B bằng với chiều cao của tứ diện đều ABCD. Do đó ta dễ dàng suy ra được: d B , A C D = a 6 3 .

Chọn phương án C.