Tứ diện đều ABCD có khoảng cách từ điểm A đến mặt phẳng bằng a. Cạnh của tứ diện có độ dài bằng
A. a 6 3
B. a 6 2
C. a 2 3
D. a 2 2
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đáp án A
Gọi G là trọng tâm tam giác đều ABC suy ra G A ⊥ ( B C D )
Gọi M là trung điểm BD.
Đặt A C = x ⇒ G C = 2 3 C M = x 3 3
lại có A C 2 - G C 2 = A G 2
⇒ x = a 6 2
Đáp án A
Gọi H là hình chiếu của điểm A trên mặt phẳng(BCD). Do ABCD là tứ diện đều nên tâm H là tâm đường trong ngoại tiếp Δ B C D .
Đặt cạnh của tứ diện là a. Gọi M là trung điểm của CD.
Do Δ B C D đều nên
B M = a 3 2 ⇒ B H = 2 3 B M = 2 3 . a 3 2 = a 3 3
Ta có Δ A B H vuông tại H nên
A H = A B 2 − B H 2 = a 2 − a 3 3 2 = a 6 3
Từ giả thiết ta có
A H = a 6 3 = 6 ⇔ a = 3 6 ⇒ S Δ B C D = a 2 3 4 = 27 3 2
(đvdt).
Vậy thể tích của tứ diện ABCD là
A H = a 6 3 = 6 ⇔ a = 3 6 ⇒ S Δ B C D = a 2 3 4 = 27 3 2
(đvtt).
Đáp án A
Gọi H là hình chiếu của điểm A trên mặt phẳng (BCD). Do ABCD là tứ diện đều nên tâm H là tâm đường trong ngoại tiếp ∆ BCD.
Đặt cạnh của tứ diện là a. Gọi M là trung điểm của CD.
Do ∆ BCD đều nên
Ta có ∆ ABH vuông tại H nên
Từ giả thiết ta có
Vậy thể tích của tứ diện ABCD là
Gọi hình chiếu vuông góc hạ từ A đến mặt phẳng (BCD) là H. Khoảng cách từ A đến mặt phẳng (BCD) là AH.
Vì tứ diện đều nên H là trọng tâm tam giác BCD
Chọn B.
Gọi hình chiếu vuông góc hạ từ A đến mặt phẳng (BCD) là H. Khoảng cách từ A đến mặt phẳng (BCD) là AH.
Vì tứ diện đều nên H là trọng tâm tam giác BCD
⇒ B H = 2 3 . 3 a 2 = a 3 3
Trong tam giác ABH
A H = A B 2 - B H 2 = a 2 - a 2 3 = a 6 3
Đáp án C
Khoảng cách từ B bằng với chiều cao của tứ diện đều ABCD. Do đó ta dễ dàng suy ra được:
=> Chọn phương án C.
Đáp án C
Khoảng cách từ B bằng với chiều cao của tứ diện đều ABCD. Do đó ta dễ dàng suy ra được: d B , A C D = a 6 3 .
Chọn phương án C.