K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 7 2018

Ta có:  y ' = 3 x 2 - 6 x + 3 m ; y ' = 0 ⇔ x 2 - 2 x + m = 0

∆’=1-m;

Để có diện tích phần trên và phần dưới thì hàm số phải có hai điểm cực trị →∆’>0→m<1. Mặt khác y”=6x-6.

y”=0→x=1→y=4m-3.

Hàm số bậc ba có đồ thị nhận điểm uốn là trục đối xứng. Do đó, để diện tích hai phần bằng nhau thì điểm uốn phải nằm trên trục hoành.

Vậy 4m=3→m=3/4 .

Đáp án C

20 tháng 10 2018

Đáp án B

29 tháng 8 2018

12 tháng 10 2018

Đáp án B

Ta có: ; .

;

hàm số có hai điểm cực trị .

Mặt khác .

.

Hàm số bậc ba có đồ thị nhận điểm uốn làm tâm đối xứng. Do đó:

m cần tìm thoả và điểm uốn nằm trên trục hoành

=> m < 1 và

.

28 tháng 3 2018

Đáp án D

Phương trình hoành độ giao điểm của đồ thị  f ( x )  và Ox:  a x 4 + b x 2 + c = 0 .

Để phương trình có bốn nghiệm

Gọi x 1 ,  x 2 ,  x 3 ,  x 4  lần lượt là bốn nghiệm của phương trình  a x 4 + b x 2 + c = 0  và  x 1 < x 2 < x 3 < x 4 . Không mất tính tổng quát, giả sử a > 0 .

Khi đó

Suy ra  x 1 = - - 5 b 6 a ;   x 2 = - - b 6 a ;   x 3 = - b 6 a ;   x 4 = - b 6 a .

Do đồ thị hàm số  f ( x )  nhận trục tung làm trục đối xứng  nên ta có:

Suy ra

Vậy  S 1 = S 2  hay  S 1 S 2 = 1 .

19 tháng 2 2017

30 tháng 4 2019

Đáp án D

Phương trình hoành độ giao điểm của đồ thị f(x) và Ox: a x 4 + b x 2 + c = 0 .

Để phương trình có bốn nghiệm

⇔ b 2 − 4 a c > 0 − b a > 0 c a > 0 ⇔ b 2 − 5 9 b 2 > 0 − b a > 0 c a > 0 ⇔ b ≠ 0 − b a > 0 c a > 0  

Gọi x 1 , x 2 , x 3 , x 4  lần lượt là bốn nghiệm của phương trình a x 4 + b x 2 + c = 0  và x 1 < x 2 < x 3 < x 4  . Không mất tính tổng quát, giả sử a>0.

Khi đó x 2 = − b + 2 b 3 2 a = − b 6 a x 2 = − b − 2 b 3 2 a = − 5 b 6 a , b < 0 .

Suy ra

x 1 = − − 5 b 6 a ; x 2 = − − b 6 a ; x 3 = − b 6 a ; x 4 = − 5 b 6 a

Do đồ thị hàm số f(x) nhận trục tung làm trục đối xứng  nên ta có:

S 1 = ∫ x 1 x 2 f x d x + ∫ x 3 x 4 f x d x = − 2 ∫ x 3 x 4 f x d x = − 2 ∫ x 3 x 4 a x 4 + b x 2 + c d x  

= − 2 a x 5 5 + b x 3 3 + c x x 4 x 3 = 2 a x 3 5 5 + b x 3 3 3 + c x 3 − 2 a x 4 5 5 + b x 4 3 3 + c x 4 .  

S 2 = ∫ x 2 x 3 f x d x = 2 ∫ 0 x 3 f x d x = 2 ∫ 0 x 3 a x 4 + b x 2 + c d x = 2 a x 5 5 + b x 3 3 + c x x 3 0

= 2 a x 3 5 5 + 2 b x 3 3 3 + 2 c x 3 .

Suy ra

S 2 − S 1 = 2 a x 4 5 5 + 2 a x 4 3 3 + 2 c x 4 = 2 a 5 − 5 b 6 a 5 + 2 b 3 − 5 b 6 a 3 + 2 c − 5 b 6 a

= 2 a 5 . 25 b 2 36 a 2 − 5 b 6 a − 2 b 3 . 5 b 6 a − 5 b 6 a + 2 c − 5 b 6 a = − 5 b 6 a 5 b 2 18 a − 5 b 2 9 a + 2 c

= − 5 b 6 a . − 5 b 2 + 36 a c 18 a = 0

Vậy S 1 = S 2  hay S 1 S 2 = 1 .

8 tháng 9 2018

7 tháng 8 2019

Đáp án C.

29 tháng 12 2017

Câu 2: Đáp án B.

Phương pháp

Hình phẳng được giới hạn bởi hàm số y = f x ,  trục hoành và các đường thẳng x = a , x = b có diện tích được tính bới công thức: 

S = ∫ a b f x d x

Cách giải

Áp dụng công thức tính diện tích hình phẳng ta được: 

S = ∫ 1 3 f x d x