K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 1 2017

Đáp án là C

20 tháng 1 2017

Đáp án là A

+ Tính 

+  Tính A'H:

Ta có:  ( Vì AH là hình chiếu của AA'  trên mp(ABCD)).

Suy ra: 

Vậy: 

30 tháng 3 2018

Đáp án là C

 

2 tháng 6 2017

Đáp án là C

Gọi H là hình chiếu của A’ trên (ABCD). Dễ thấy góc 

Dễ dàng tính được diện tích đáy

18 tháng 5 2018

Đáp án D

Gọi H là trung điểm của BC, kẻ H K ⊥ C ' D '   K ∈ C ' D '  

Suy ra B H ⊥ A ' B ' C ' D ' ⇒ A C ' D ' ; A ' B ' C ' D ' ^ = B K H ^  

Tam giác A’C’D’ đều cạnh 2 a ⇒ H K = d A ' ; C ' D ' = a 3  

Tam giác BHK vuông tại H ⇒ B H = tan 60 ∘   x   H K = 3 a  

Diện tích hình thoi A’B’C’D’ là S A ' B ' C ' D ' = 2 a 2 3 .  

 

Vậy thể tích khối lăng trụ ABC.A’B’C’D’ là V = B H . S A ' B ' C ' D ' = 3 a .2 a 2 3 = 6 3 a 3  

4 tháng 8 2018

Chọn đáp án D.

NV
27 tháng 4 2021

\(AH\perp\left(ABCD\right)\Rightarrow\widehat{A'AH}\) là góc giữa AA' và (ABCD) \(\Rightarrow\widehat{A'AH}=60^0\)

\(\Rightarrow AA'=\dfrac{AH}{cos60^0}=a\)

a. Ta có: \(\left\{{}\begin{matrix}A'H\perp\left(ABCD\right)\Rightarrow A'H\perp AD\\AD\perp AB\end{matrix}\right.\) \(\Rightarrow AD\perp\left(ABB'A'\right)\)

Mà \(AD\in\left(ADD'A'\right)\Rightarrow\left(ADD'A'\right)\perp\left(ABB'A'\right)\)

b. Kiểm tra lại đề câu này

Hai mặt phẳng (ABCD) và (A'B'C'D') hiển nhiên song song (theo tính chất lăng trụ) nên góc giữa chúng bằng 0. Do đó thấy ngay \(tan\left(\left(ABCD\right);\left(A'B'C'D'\right)\right)=0\)

Có lẽ không ai bắt tính điều này cả.

c.

\(\left(ABCD\right)||\left(A'B'C'D'\right)\Rightarrow d\left(A;\left(A'B'C'D'\right)\right)=d\left(A';\left(ABCD\right)\right)=A'H=a\)

16 tháng 3 2018

NV
24 tháng 6 2021

Gọi H là trung điểm AB \(\Rightarrow SH\perp\left(ABCD\right)\)

\(\Rightarrow\) CH là hình chiếu vuông góc của SC lên (ABCD)

\(\Rightarrow\widehat{SCH}=60^0\)

Do \(\widehat{ABD}=60^0\Rightarrow\) các tam giác ABD và BCD là tam giác đều cạnh a

\(\Rightarrow\widehat{ABC}=120^0\)

Áp dụng định lý hàm cos cho tam giác BCH:

\(CH=\sqrt{BC^2+BH^2-2BC.BH.cos120^0}=\dfrac{a\sqrt{7}}{2}\)

\(\Rightarrow SH=CH.tan60^0=\dfrac{a\sqrt{21}}{2}\)

\(V=\dfrac{1}{3}SH.2S_{ABD}=\dfrac{1}{3}.\dfrac{a\sqrt{21}}{2}.2.\dfrac{a^2\sqrt{3}}{4}=\dfrac{a^3\sqrt{7}}{8}\)

11 tháng 9 2017

Đáp án B

Gọi M, N lần lượt là trung điểm của AC và AM.

Khi đó ΔAHM là tam giác đều và NH ⊥ AC .