Phương trình nào dưới đây là phương trình mặt cầu
A. 2 x 2 + 2 y 2 + 2 z 2 - 2 x - 4 y + 6 z - 1 = 0
B. x 2 + y 2 + z 2 + 2 x - 2 y - z + 3 = 0
. x 2 + y 2 - z 2 + 2 x - y + 6 z + 2 = 0
D. x 2 + y 2 + z 2 - x - 2 y + 3 z + 4 = 0
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đáp án B
Pt pháp tuyến của mặt phẳng cần tìm là n ⇀ = d , ⇀ ∆ ⇀ = (1;0;1)
Pt có dạng: x+z+D=0
Khoảng cách từ O (-1;1;-2) đến mp là 2
⇒ D=1
Pt có dạng : x+z+1=0
Đáp Án D
Pt đường thẳng d có vecto chỉ phương u ⇀ = n P ⇀ , n Q ⇀ = (1;0;-1)
Dt đi qua A (1;-2;3)
Chọn đáp án D
Đáp án đúng là B
Phương trình \(3x + 2y - 6 = 0\) không là phương trình bậc nhất một ẩn vì phương trình không có dạng \(ax + b = 0\) với \(a \ne 0\). (Có hai ẩn \(x;y\))
Phương trình \(3x + 6 = 0\) là phương trình bậc nhất một ẩn vì phương trình có dạng \(ax + b = 0\) với \(a \ne 0\).
Phương trình \({x^2} = 4\) không là phương trình bậc nhất một ẩn vì phương trình không có dạng \(ax + b = 0\) với \(a \ne 0\). (Bậc cao nhất là bậc 2)
Phương trình \({y^2} - x + 1 = 0\) không là phương trình bậc nhất một ẩn vì phương trình không có dạng \(ax + b = 0\) với \(a \ne 0\). (Có hai ẩn \(x;y\))
Đáp án B
Phương pháp giải:
Ứng dụng của tích có hướng để tìm vectơ pháp tuyến của mặt phẳng. Phương trình mặt phẳng đi qua M ( x 0 ; y 0 ; z 0 ) và có VTPT
Lời giải:
Vậy phương trình mặt phẳng (P): 2x-3y-z+7=0