Cho khối chóp tứ giác đều S.ABCD có thể tích bằng a 3 và đáy ABCD là hình vuông cạnh a. Tính cosα với α là góc giữa mặt bên và mặt đáy
A. cos α = 1 5
B. cos α = 1 3
C. cos α = 1 37
D. cos α = 1 19
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đáp án A.
Gọi O là tâm hình vuông ABCD, H là trung điểm AB.
⇒ A B ⊥ S H O ⇒ S A B ; A B C D ^ = S H ; O H ^ = S H O ^ = α . ⇒ c o s α = 1 3 ⇒ tan α = 3 x 2 − 1 = 2 2 ⇒ S O = tan α × O H = a 2 .
Kẻ CM vuông góc với SD M ∈ S D ⇒ m p P ≡ m p A C M .
Mặt phẳng A M C chia khối chóp A.ABCD thành hai khối đa diện gồm M.ACD có thể tích là V 1 và khối đa diện còn lại có thể tích V 2 .
Diện tích tam giác SAB là S Δ S A B = 1 2 . S H . A B = a 2 . 3 a 2 = 3 a 2 4 .
Và
S D = S O 2 + D O 2 = a 10 2 ⇒ S Δ . S C D = 1 2 . S H . S D ⇒ C M = 3 a 10 .
Tam giác MCD vuông tại M ⇒ M D = C D 2 − M C 2 = a 10 ⇒ M D S D = 1 5 .
Ta có:
V M . A C D V S . A C D = M D S D = 1 5 ⇒ V M . A C D = V S . A B C D 10 ⇔ V 1 = V 1 + V 2 10 ⇔ V 1 V 2 = 1 9 .
Chọn đáp án A
Gọi O là tâm hình vuông ABCD, H là trung điểm của AB
Mặt phẳng (ACM) chia khối chóp S.ABCD thành hai khối đa diện M.ACD có thể tích V1 và khối đa diện còn lại có thể tích V2
Đáp án A
Đặt a> 0 cạnh hình vuông là Dễ thấy
Gọi O là tâm của đáy. Vẽ AH ⊥ SC tại, H, AH cắt SO tại I thì A I O ^ = φ
Qua I vẽ đường thẳng song song DB cắt SD, SB theo thứ tự tại K, L. Thiết diện chính là tứ giác
ALHK và tứ giác này có hai đường chéo AH ⊥ KL Suy ra
Ta có:
Theo giả thiết
Giải được
Suy ra φ = a r c sin 33 + 1 8
Chọn C.
Phương pháp:
Thể tích của khối chóp ngoại tiếp hình chóp
Cách giải:
Gọi O là tâm của hình vuông ABCD, I là trung điểm của BC.