Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Phương pháp:
- Sử dụng phương pháp tọa độ trong không gian, gắn hệ trục tọa độ gốc A và các trục tọa độ sao cho
- Sử dụng các công thức điểm, véc tơ, mặt phẳng, góc giữa hai mặt phẳng để tính toán.
Cách giải:
Gắn hệ trục tọa độ như hình vẽ, giả sử ABCD là hình vuông cạnh l,
chiều cao hình chóp SH = h.
Đáp án C
Gọi H là tâm đường tròn ngoại tiếp đều ∆ABD
Ta có
Lại có d(H;(SBC)) = HK và
Khoảng cách từ D →(SBC) là
Vậy ∆ABD
Chọn đáp án C.
Gọi H là hình chiếu vuông góc của A trên SB.
Đáp án C.
Ta có B C ⊥ A B ; B C ⊥ S A nên B C ⊥ S A B .
Gọi H là hình chiếu vuông góc của A trên SB.
Khi đó A H ⊥ S B C và d A , S B C = A H .
Ta có góc giữa đường thẳng SB và mặt phẳng A B C D là góc S B A ^ .
Đặt S B A ^ = α .
Theo giả thiết ta có A B = a sin α ; S A = a cos α .
Thể tích khối chóp S.ABCD là V = 1 3 . S A . S A B C D = 1 3 sin 2 α cos α a 3 .
Áp dụng bất đẳng thức Cô-si, ta có
sin 2 α . sin 2 α .2 cos 2 α ≤ sin 2 α + sin 2 α + 2 cos 2 α 3 3 = 8 27
Suy ra sin 2 α cos α ≤ 2 3 9 . Do đó V ≥ 3 2 a 3 .
Dấu bằng xảy ra khi sin 2 α = 2 cos 2 α ⇒ cos α = 1 3 .
Vậy thể tích khối chóp S.ABCD đạt giá trị nhỏ nhất bằng 3 2 a 3 khi cos α = 1 3 .
Suy ra V 0 = 3 2 a 3 ; p = 1, q = 3
⇒ T = p + q V 0 = 2 3 a 3 .